Suzanne Dworak-Peck School of Social Work and Center for Artificial Intelligence in Society, University of Southern California Los Angeles, CA.
Center for Research on Computation and Society, John A. Paulson School of Engineering and Applied Sciences, Harvard University Cambridge, MA.
J Acquir Immune Defic Syndr. 2021 Dec 15;88(S1):S20-S26. doi: 10.1097/QAI.0000000000002807.
Youth experiencing homelessness (YEH) are at elevated risk of HIV/AIDS and disproportionately identify as racial, ethnic, sexual, and gender minorities. We developed a new peer change agent (PCA) HIV prevention intervention with 3 arms: (1) an arm using an artificial intelligence (AI) planning algorithm to select PCAs; (2) a popularity arm, the standard PCA approach, operationalized as highest degree centrality (DC); and (3) an observation-only comparison group.
A total of 713 YEH were recruited from 3 drop-in centers in Los Angeles, CA.
Youth consented and completed a baseline survey that collected self-reported data on HIV knowledge, condom use, and social network information. A quasi-experimental pretest/posttest design was used; 472 youth (66.5% retention at 1 month postbaseline) and 415 youth (58.5% retention at 3 months postbaseline) completed follow-up. In each intervention arm (AI and DC), 20% of youth was selected as PCAs and attended a 4-hour initial training, followed by 7 weeks of half-hour follow-up sessions. Youth disseminated messages promoting HIV knowledge and condom use.
Using generalized estimating equation models, there was a significant reduction over time (P < 0.001) and a significant time by AI arm interaction (P < 0.001) for condomless anal sex act. There was a significant increase in HIV knowledge over time among PCAs in DC and AI arms.
PCA models that promote HIV knowledge and condom use are efficacious for YEH. Youth are able to serve as a bridge between interventionists and their community. Interventionists should consider working with computer scientists to solve implementation problems.
无家可归的青年(YEH)感染艾滋病毒/艾滋病的风险较高,而且不成比例地被认定为种族、民族、性和性别少数群体。我们开发了一种新的同伴变革代理人(PCA)HIV 预防干预措施,有 3 个分支:(1)使用人工智能(AI)规划算法选择 PCA 的分支;(2)流行分支,即标准 PCA 方法,以最高度中心性(DC)实施;(3)仅观察比较组。
共从加利福尼亚州洛杉矶的 3 个临时收容中心招募了 713 名 YEH。
青年同意并完成了一项基线调查,该调查收集了关于 HIV 知识、 condom 使用和社交网络信息的自我报告数据。采用准实验预测试/后测试设计;472 名青年(基线后 1 个月的保留率为 66.5%)和 415 名青年(基线后 3 个月的保留率为 58.5%)完成了随访。在每个干预分支(AI 和 DC)中,选择 20%的青年作为 PCA,并参加了 4 小时的初始培训,然后是 7 周的半小时随访。青年传播促进 HIV 知识和 condom 使用的信息。
使用广义估计方程模型, condom 无保护肛交行为随时间显著减少(P < 0.001),AI 臂间存在显著的时间交互作用(P < 0.001)。DC 和 AI 臂中的 PCA 在 HIV 知识方面随时间显著增加。
促进 HIV 知识和 condom 使用的 PCA 模型对 YEH 有效。青年能够成为干预者和他们的社区之间的桥梁。干预者应考虑与计算机科学家合作解决实施问题。