Suppr超能文献

利用整合膜提取、电子显微镜和机器学习技术对足细胞肌动蛋白网络进行三维可视化。

Three-Dimensional Visualization of the Podocyte Actin Network Using Integrated Membrane Extraction, Electron Microscopy, and Machine Learning.

机构信息

Department of Mechanical Engineering, National Science Foundation Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri.

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri.

出版信息

J Am Soc Nephrol. 2022 Jan;33(1):155-173. doi: 10.1681/ASN.2021020182. Epub 2021 Nov 10.

Abstract

BACKGROUND

Actin stress fibers are abundant in cultured cells, but little is known about them . In podocytes, much evidence suggests that mechanobiologic mechanisms underlie podocyte shape and adhesion in health and in injury, with structural changes to actin stress fibers potentially responsible for pathologic changes to cell morphology. However, this hypothesis is difficult to rigorously test due to challenges with visualization. A technology to image the actin cytoskeleton at high resolution is needed to better understand the role of structures such as actin stress fibers in podocytes.

METHODS

We developed the first visualization technique capable of resolving the three-dimensional cytoskeletal network in mouse podocytes in detail, while definitively identifying the proteins that comprise this network. This technique integrates membrane extraction, focused ion-beam scanning electron microscopy, and machine learning image segmentation.

RESULTS

Using isolated mouse glomeruli from healthy animals, we observed actin cables and intermediate filaments linking the interdigitated podocyte foot processes to newly described contractile actin structures, located at the periphery of the podocyte cell body. Actin cables within foot processes formed a continuous, mesh-like, electron-dense sheet that incorporated the slit diaphragms.

CONCLUSIONS

Our new technique revealed, for the first time, the detailed three-dimensional organization of actin networks in healthy podocytes. In addition to being consistent with the gel compression hypothesis, which posits that foot processes connected by slit diaphragms act together to counterbalance the hydrodynamic forces across the glomerular filtration barrier, our data provide insight into how podocytes respond to mechanical cues from their surrounding environment.

摘要

背景

肌动蛋白应力纤维在培养细胞中丰富,但对其知之甚少。在足细胞中,有大量证据表明,机械生物学机制是足细胞在健康和损伤时形态和黏附的基础,肌动蛋白应力纤维的结构变化可能是导致细胞形态病理性变化的原因。然而,由于可视化的挑战,这个假设很难被严格地检验。需要一种能够高分辨率成像肌动蛋白细胞骨架的技术,以便更好地理解肌动蛋白应力纤维等结构在足细胞中的作用。

方法

我们开发了第一种能够详细解析小鼠足细胞中三维细胞骨架网络的可视化技术,同时明确确定了构成该网络的蛋白质。该技术整合了膜提取、聚焦离子束扫描电子显微镜和机器学习图像分割。

结果

使用来自健康动物的分离的小鼠肾小球,我们观察到肌动蛋白电缆和中间丝将相互交错的足细胞足突连接到新描述的位于足细胞胞体外围的收缩性肌动蛋白结构。足突内的肌动蛋白电缆形成了一个连续的、网状的、电子致密的薄片,包含了裂隙隔膜。

结论

我们的新技术首次揭示了健康足细胞中肌动蛋白网络的详细三维组织。除了与凝胶压缩假说一致,该假说认为由裂隙隔膜连接的足突一起作用以抵消肾小球滤过屏障跨膜的流体动力,我们的数据还提供了对足细胞如何对周围环境的机械线索做出反应的深入了解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea6/8763187/48b4d634b15b/ASN.2021020182absf1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验