Suppr超能文献

SMG1 和 CDK12 将 ΔNp63α 的磷酸化与角质形成细胞中的 RNA 监测联系起来。

SMG1 and CDK12 Link ΔNp63α Phosphorylation to RNA Surveillance in Keratinocytes.

机构信息

Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.

出版信息

J Proteome Res. 2021 Dec 3;20(12):5347-5358. doi: 10.1021/acs.jproteome.1c00427. Epub 2021 Nov 11.

Abstract

The tumor suppressor p53-like protein p63 is required for self-renewal of epidermal tissues. Loss of p63 or exposure to ultraviolet (UV) irradiation triggers terminal differentiation in keratinocytes. However, it remains unclear how p63 diverts epidermal cells from proliferation to terminal differentiation, thereby contributing to successful tissue self-renewal. Here, we used bottom-up proteomics to identify the proteome at the chromatin in normal human epidermal keratinocytes following UV irradiation and p63 depletion. We found that loss of p63 increased DNA damage and that UV irradiation recruited the cyclin-dependent kinase CDK12 and the serine/threonine protein kinase SMG1 to chromatin only in the presence of p63. A post-translational modification analysis of ΔNp63α with mass spectrometry revealed that phosphorylation of T/S and S was dependent on SMG1, whereas CDK12 increased the phosphorylation of ΔNp63α at S/S and S. Indirect phosphorylation of ΔNp63α in the presence of SMG1 enabled ΔNp63α to bind to the tumor suppressor p53-specific DNA recognition sequence, whereas CDK12 rendered ΔNp63α less responsive to UV irradiation and was not required for specific DNA binding. CDK12 and SMG1 are known to regulate the transcription and splicing of RNAs and the decay of nonsense RNAs, respectively, and a subset of p63-specific protein-protein interactions at the chromatin also linked p63 to RNA transcription and decay. We observed that in the absence of p63, UV irradiation resulted in more ORF1p. ORF1p is the first protein product of the intronless non-LTR retrotransposon LINE-1, indicating a derailed surveillance of RNA processing and/or translation. Our results suggest that p63 phosphorylation and transcriptional activation might correspond to altered RNA processing and/or translation to protect proliferating keratinocytes from increased genotoxic stress.

摘要

肿瘤抑制因子 p53 样蛋白 p63 对于表皮组织的自我更新是必需的。p63 的缺失或暴露于紫外线 (UV) 辐射会触发角质形成细胞的终末分化。然而,p63 如何将表皮细胞从增殖转向终末分化,从而促进成功的组织自我更新,目前仍不清楚。在这里,我们使用自上而下的蛋白质组学方法,在正常的人类表皮角质形成细胞中,在 UV 照射和 p63 缺失后,鉴定了染色质上的蛋白质组。我们发现,p63 的缺失增加了 DNA 损伤,并且只有在存在 p63 的情况下,UV 照射才能招募细胞周期蛋白依赖性激酶 CDK12 和丝氨酸/苏氨酸蛋白激酶 SMG1 到染色质上。通过质谱对 ΔNp63α 的翻译后修饰分析表明,T/S 和 S 的磷酸化依赖于 SMG1,而 CDK12 增加了 ΔNp63α 在 S/S 和 S 上的磷酸化。在 SMG1 的存在下,ΔNp63α 的间接磷酸化使 ΔNp63α 能够结合肿瘤抑制因子 p53 特异性的 DNA 识别序列,而 CDK12 使 ΔNp63α 对 UV 照射的反应性降低,并且不是特异性 DNA 结合所必需的。CDK12 和 SMG1 分别被认为调节 RNA 的转录和剪接以及无意义 RNA 的降解,染色质上的一组 p63 特异性蛋白质-蛋白质相互作用也将 p63 与 RNA 转录和降解联系起来。我们观察到,在没有 p63 的情况下,UV 照射会导致更多的 ORF1p。ORF1p 是无内含子非 LTR 逆转录转座子 LINE-1 的第一个蛋白质产物,表明 RNA 加工和/或翻译的监测失控。我们的结果表明,p63 的磷酸化和转录激活可能对应于改变的 RNA 加工和/或翻译,以保护增殖的角质形成细胞免受增加的遗传毒性应激。

相似文献

1
SMG1 and CDK12 Link ΔNp63α Phosphorylation to RNA Surveillance in Keratinocytes.
J Proteome Res. 2021 Dec 3;20(12):5347-5358. doi: 10.1021/acs.jproteome.1c00427. Epub 2021 Nov 11.
2
Ultraviolet radiation induces phosphorylation and ubiquitin-mediated degradation of DeltaNp63alpha.
Cell Cycle. 2005 May;4(5):710-6. doi: 10.4161/cc.4.5.1685. Epub 2005 May 23.
3
DeltaNp63 transcriptionally regulates ATM to control p53 Serine-15 phosphorylation.
Mol Cancer. 2010 Jul 21;9:195. doi: 10.1186/1476-4598-9-195.
4
DeltaNp63alpha repression of the Notch1 gene supports the proliferative capacity of normal human keratinocytes and cervical cancer cells.
Cancer Res. 2010 May 15;70(10):4034-44. doi: 10.1158/0008-5472.CAN-09-4063. Epub 2010 May 4.
5
9
MDM2 and Fbw7 cooperate to induce p63 protein degradation following DNA damage and cell differentiation.
J Cell Sci. 2010 Jul 15;123(Pt 14):2423-33. doi: 10.1242/jcs.061010. Epub 2010 Jun 22.
10
Homeodomain protein Dlx3 induces phosphorylation-dependent p63 degradation.
Cell Cycle. 2009 Apr 15;8(8):1185-95. doi: 10.4161/cc.8.8.8202. Epub 2009 Apr 16.

引用本文的文献

1
The dual role of p63 in cancer.
Front Oncol. 2023 Apr 27;13:1116061. doi: 10.3389/fonc.2023.1116061. eCollection 2023.
2
Distinct interactors define the p63 transcriptional signature in epithelial development or cancer.
Biochem J. 2022 Jun 30;479(12):1375-1392. doi: 10.1042/BCJ20210737.

本文引用的文献

1
Biology of RNA Surveillance in Development and Disease.
Trends Cell Biol. 2019 May;29(5):428-445. doi: 10.1016/j.tcb.2019.01.004. Epub 2019 Feb 10.
2
ProLuCID: An improved SEQUEST-like algorithm with enhanced sensitivity and specificity.
J Proteomics. 2015 Nov 3;129:16-24. doi: 10.1016/j.jprot.2015.07.001. Epub 2015 Jul 11.
3
The carboxy-terminus of p63 links cell cycle control and the proliferative potential of epidermal progenitor cells.
Development. 2015 Jan 15;142(2):282-90. doi: 10.1242/dev.118307. Epub 2014 Dec 11.
4
Induced multipotency in adult keratinocytes through down-regulation of ΔNp63 or DGCR8.
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):E572-81. doi: 10.1073/pnas.1319743111. Epub 2014 Jan 21.
7
Modified MuDPIT separation identified 4488 proteins in a system-wide analysis of quiescence in yeast.
J Proteome Res. 2013 May 3;12(5):2177-84. doi: 10.1021/pr400027m. Epub 2013 Apr 9.
8
Phosphorylation of ΔNp63α via a novel TGFβ/ALK5 signaling mechanism mediates the anti-clonogenic effects of TGFβ.
PLoS One. 2012;7(11):e50066. doi: 10.1371/journal.pone.0050066. Epub 2012 Nov 16.
9
Global tumor protein p53/p63 interactome: making a case for cisplatin chemoresistance.
Cell Cycle. 2012 Jun 15;11(12):2367-79. doi: 10.4161/cc.20863.
10
Increased p63 phosphorylation marks early transition of epidermal stem cells to progenitors.
J Invest Dermatol. 2012 Oct;132(10):2461-2464. doi: 10.1038/jid.2012.165. Epub 2012 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验