Suppr超能文献

基于矩阵分解模型和时间序列预测的服务推荐

Service recommendation driven by a matrix factorization model and time series forecasting.

作者信息

Ngaffo Armielle Noulapeu, Ayeb Walid El, Choukair Zièd

机构信息

Higher School of Communication of Tunis, Mediatron Laboratory, University of Carthage, Tunis, Tunisia.

出版信息

Appl Intell (Dordr). 2022;52(1):1110-1125. doi: 10.1007/s10489-021-02478-0. Epub 2021 May 16.

Abstract

The rise of high-quality cloud services has made service recommendation a crucial research question. Quality of Service (QoS) is widely adopted to characterize the performance of services invoked by users. For this purpose, the QoS prediction of services constitutes a decisive tool to allow end-users to optimally choose high-quality cloud services aligned with their needs. The fact is that users only consume a few of the broad range of existing services. Thereby, perform a high-accurate service recommendation becomes a challenging task. To tackle the aforementioned challenges, we propose a data sparsity resilient service recommendation approach that aims to predict relevant services in a sustainable manner for end-users. Indeed, our method performs both a QoS prediction of the current time interval using a flexible matrix factorization technique and a QoS prediction of the future time interval using a time series forecasting method based on an AutoRegressive Integrated Moving Average (ARIMA) model. The service recommendation in our approach is based on a couple of criteria ensuring in a lasting way, the appropriateness of the services returned to the active user. The experiments are conducted on a real-world dataset and demonstrate the effectiveness of our method compared to the competing recommendation methods.

摘要

高质量云服务的兴起使服务推荐成为一个关键的研究问题。服务质量(QoS)被广泛用于表征用户调用服务的性能。为此,服务的QoS预测构成了一个决定性工具,使终端用户能够根据自身需求最佳地选择高质量的云服务。事实上,用户只使用了现有众多服务中的少数几种。因此,进行高精度的服务推荐成为一项具有挑战性的任务。为应对上述挑战,我们提出了一种抗数据稀疏性的服务推荐方法,旨在以可持续的方式为终端用户预测相关服务。实际上,我们的方法既使用灵活的矩阵分解技术对当前时间间隔进行QoS预测,又使用基于自回归积分移动平均(ARIMA)模型的时间序列预测方法对未来时间间隔进行QoS预测。我们方法中的服务推荐基于几个标准,以持久地确保返回给活跃用户的服务的适用性。实验在一个真实世界的数据集上进行,结果表明我们的方法与竞争推荐方法相比是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7510/8124023/8dc9035a7179/10489_2021_2478_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验