Suppr超能文献

深度神经网络用于准确预测机械辅助下的左心室收缩功能。

Deep Neural Network to Accurately Predict Left Ventricular Systolic Function Under Mechanical Assistance.

作者信息

Bonnemain Jean, Zeller Matthias, Pegolotti Luca, Deparis Simone, Liaudet Lucas

机构信息

Department of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.

SCI-SB-SD, Institute of Mathematics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Ecublens, Switzerland.

出版信息

Front Cardiovasc Med. 2021 Oct 26;8:752088. doi: 10.3389/fcvm.2021.752088. eCollection 2021.

Abstract

Characterizing left ventricle (LV) systolic function in the presence of an LV assist device (LVAD) is extremely challenging. We developed a framework comprising a deep neural network (DNN) and a 0D model of the cardiovascular system to predict parameters of LV systolic function. DNN input data were systemic and pulmonary arterial pressure signals, and rotation speeds of the device. Output data were parameters of LV systolic function, including end-systolic maximal elastance (E ), a variable essential for adequate hemodynamic assessment of the LV. A 0D model of the cardiovascular system, including a wide range of LVAD settings and incorporating the whole spectrum of heart failure, was used to generate data for the training procedure of the DNN. The DNN predicted E with a mean relative error of 10.1%, and all other parameters of LV function with a mean relative error of <13%. The framework was then able to retrieve a number of LV physiological variables (i.e., pressures, volumes, and ejection fraction) with a mean relative error of <5%. Our method provides an innovative tool to assess LV hemodynamics under device assistance, which could be helpful for a better understanding of LV-LVAD interactions, and for therapeutic optimization.

摘要

在存在左心室辅助装置(LVAD)的情况下,表征左心室(LV)的收缩功能极具挑战性。我们开发了一个由深度神经网络(DNN)和心血管系统零维模型组成的框架,以预测LV收缩功能的参数。DNN的输入数据是体循环和肺动脉压力信号以及装置的转速。输出数据是LV收缩功能的参数,包括收缩末期最大弹性(E ),这是对LV进行充分血流动力学评估所必需的一个变量。心血管系统的零维模型,包括广泛的LVAD设置并纳入了整个心力衰竭谱,用于为DNN的训练过程生成数据。DNN预测E 的平均相对误差为10.1%,LV功能的所有其他参数的平均相对误差<13%。然后,该框架能够以<5%的平均相对误差检索多个LV生理变量(即压力、容积和射血分数)。我们的方法提供了一种创新工具,用于评估装置辅助下的LV血流动力学,这有助于更好地理解LV与LVAD的相互作用,并进行治疗优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca7c/8576185/952d2745c25c/fcvm-08-752088-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验