Cardona-Cardona Yudy V, Regla Ignacio, Juárez-Díaz Javier Andrés, Carrillo-Campos Javier, López-Ortiz Manuel, Aguilera-Cruz Alejandro, Mújica-Jiménez Carlos, Muñoz-Clares Rosario A
Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México.
Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, México.
FEBS J. 2022 May;289(9):2685-2705. doi: 10.1111/febs.16277. Epub 2021 Nov 24.
The opportunistic human pathogen Pseudomonas aeruginosa exhibits great resistance to antibiotics; so, new therapeutic agents are urgently needed. Since polyamines levels are incremented in infected tissues, we explored whether the formation of a toxic aldehyde in polyamines degradation can be exploited in combating infection. We cloned the gene encoding the only aminoaldehyde dehydrogenase involved in P. aeruginosa polyamines-degradation routes, PaPauC, overexpressed this enzyme, and found that it oxidizes 3-aminopropionaldehyde (APAL) and 3-glutamyl-3-aminopropionaldehyde (GluAPAL) - produced in spermine (Spm), spermidine (Spd), and diaminopropane (Dap) degradation, as well as 4-aminobutyraldehyde (ABAL) and 4-glutamyl-4-aminobutyraldehyde (GluABAL) - formed in putrescine (Put) degradation. As the catalytic efficiency of PaPauC with APAL was 30-times lower than with GluAPAL, and GluAPAL is predominantly formed, APAL will be poorly oxidized 'in vivo'. We found polyamines-induced increases in the PaPauC activity of cell crude-extracts and in the expression of the PapauC gene that were diminished by glucose. Spm, Spd, or Dap, but not Put, were toxic to P. aeruginosa even in the presence of other carbon and nitrogen sources, particularly to a strain with the PapauC gene disrupted. APAL, but not GluAPAL, was highly toxic even to wild-type cells, suggesting that its accumulation, particularly in the absence of, or low, PaPauC activity is responsible for the toxicity of Spm, Spd, and Dap. Our results shed light on the toxicity mechanism of these three polyamines and strongly support the critical role of PaPauC in this toxicity. Thus, PaPauC emerges as a novel potential drug target whose inhibition might help in combating infection by this important pathogen.
机会性人类病原体铜绿假单胞菌对抗生素表现出很强的抗性,因此迫切需要新的治疗药物。由于感染组织中的多胺水平会升高,我们探究了多胺降解过程中产生的有毒醛类的形成是否可用于对抗感染。我们克隆了编码铜绿假单胞菌多胺降解途径中唯一的氨基醛脱氢酶的基因PaPauC,对该酶进行了过表达,并发现它能氧化在精胺(Spm)、亚精胺(Spd)和二氨基丙烷(Dap)降解过程中产生的3-氨基丙醛(APAL)和3-谷氨酰-3-氨基丙醛(GluAPAL),以及在腐胺(Put)降解过程中形成的4-氨基丁醛(ABAL)和4-谷氨酰-4-氨基丁醛(GluABAL)。由于PaPauC对APAL的催化效率比对GluAPAL低30倍,且GluAPAL占主导地位,所以APAL在“体内”的氧化程度很低。我们发现多胺会导致细胞粗提物中PaPauC活性增加以及PapauC基因表达增加,而葡萄糖会使其降低。即使存在其他碳源和氮源,Spm、Spd或Dap对铜绿假单胞菌也有毒性,尤其是对PaPauC基因被破坏的菌株。APAL,而不是GluAPAL,即使对野生型细胞也具有高毒性,这表明其积累,特别是在PaPauC活性缺失或较低时,是Spm、Spd和Dap毒性的原因。我们的结果揭示了这三种多胺的毒性机制,并有力地支持了PaPauC在这种毒性中的关键作用。因此,PaPauC成为一种新的潜在药物靶点,抑制它可能有助于对抗这种重要病原体的感染。