Alonso-Orts Manuel, Carrasco Daniel, San Juan José M, Nó María Luisa, de Andrés Alicia, Nogales Emilio, Méndez Bianchi
Departamento Física de Materiales, Fac. CC Físicas, Universidad Complutense de Madrid, Madrid, 28040, Spain.
Departamento de Física, Facultad de Ciencias y Tecnología, Universidad del País Vasco, Apdo. 644, Bilbao, 48080, Spain.
Small. 2022 Jan;18(1):e2105355. doi: 10.1002/smll.202105355. Epub 2021 Nov 12.
Remote temperature sensing at the micro- and nanoscale is key in fields such as photonics, electronics, energy, or biomedicine, with optical properties being one of the most used transducing mechanisms for such sensors. Ga O presents very high chemical and thermal stability, as well as high radiation resistance, becoming of great interest to be used under extreme conditions, for example, electrical and/or optical high-power devices and harsh environments. In this work, a luminescent and interferometric thermometer is proposed based on Fabry-Perot (FP) optical microcavities built on Cr-doped Ga O nanowires. It combines the optical features of the Cr -related luminescence, greatly sensitive to temperature, and spatial confinement of light, which results in strong FP resonances within the Cr broad band. While the chromium-related R lines energy shifts are adequate for low-temperature sensing, FP resonances extend the sensing range to high temperatures with excellent sensitivity. This thermometry system achieves micron-range spatial resolution, temperature precision of around 1 K, and a wide operational range, demonstrating to work at least in the 150-550 K temperature range. Besides, the temperature-dependent anisotropic refractive index and thermo-optic coefficient of this oxide have been further characterized by comparison to experimental, analytical, and finite-difference time-domain simulation results.
在微米和纳米尺度上进行远程温度传感是光子学、电子学、能源或生物医学等领域的关键,光学特性是此类传感器最常用的传感机制之一。氧化镓具有非常高的化学和热稳定性,以及高抗辐射性,因此在极端条件下(例如,电气和/或光学高功率器件以及恶劣环境)的应用中备受关注。在这项工作中,基于在掺铬氧化镓纳米线上构建的法布里-珀罗(FP)光学微腔,提出了一种发光和干涉式温度计。它结合了对温度极为敏感的与铬相关的发光的光学特性以及光的空间限制,这导致在铬宽带内产生强烈的FP共振。虽然与铬相关的R线能量偏移适用于低温传感,但FP共振以出色的灵敏度将传感范围扩展到高温。这种测温系统实现了微米级的空间分辨率、约1K的温度精度以及宽工作范围,证明至少在150 - 550K的温度范围内有效。此外,通过与实验、分析和时域有限差分模拟结果进行比较,进一步表征了这种氧化物随温度变化的各向异性折射率和热光系数。