Suppr超能文献

基于 csq 拓扑结构的锆卟啉金属有机骨架的可见光驱动声-光催化快速还原水中的六价铬

Visible-Light-Driven Sonophotocatalysis for the Rapid Reduction of Aqueous Cr(VI) Based on Zirconium-Porphyrin Metal-Organic Frameworks with csq Topology.

机构信息

College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China.

Post-doctoral Mobile Research Station of Forestry Engineering, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China.

出版信息

Inorg Chem. 2021 Dec 6;60(23):18133-18140. doi: 10.1021/acs.inorgchem.1c02739. Epub 2021 Nov 12.

Abstract

Photochemical treatment of highly toxic Cr(VI) is a desirable and ecofriendly method to protect the environment and human beings. In this study, a MOF-based sonophotocatalytic system is established, in which visible-light-driven sonophotocatalytic reduction of toxic Cr(VI) to Cr(III) in water is investigated using zirconium-porphyrin metal-organic frameworks (MOFs) structured as PCN-222(M) [M = H, Zn(II), Fe(III), Co(II)]. In the view of the synergistic effect of sonochemistry and photocatalysis, PCN-222(M) exhibited enhanced activities for Cr(VI) reduction compared with the photocatalytic process. Kinetic studies showed that apparent reaction rate constants in the sonophotocatalytic system of PCN-222(M) are 1.5-3.3 times higher than those in photocatalysis. Fluorescence and UV-vis absorption spectra measurements demonstrate that the sonophotocatalytic process promotes the transfer of photoinduced electrons from PCN-222(M) to Cr(VI), thus enhancing the catalytic performance. The innovative combination of porous MOFs and sonophotocatalytic technology might become a feasible strategy to improve the existing MOF-based photocatalytic systems.

摘要

光化学处理高毒性 Cr(VI) 是一种理想的环保方法,可以保护人类和环境。在这项研究中,建立了一种基于 MOF 的声-光催化体系,使用结构为 PCN-222(M)[M = H、Zn(II)、Fe(III)、Co(II)]的锆卟啉金属-有机骨架(MOF),研究了在水中利用可见光驱动的声-光催化还原有毒 Cr(VI)为 Cr(III)。鉴于声化学和光催化的协同效应,PCN-222(M)在 Cr(VI)还原方面表现出比光催化过程更高的活性。动力学研究表明,PCN-222(M)的声-光催化体系中的表观反应速率常数比光催化过程高 1.5-3.3 倍。荧光和紫外-可见吸收光谱测量表明,声-光催化过程促进了光诱导电子从 PCN-222(M)向 Cr(VI)的转移,从而提高了催化性能。多孔 MOF 和声-光催化技术的创新结合可能成为改进现有基于 MOF 的光催化系统的可行策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验