Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
The Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
ACS Chem Biol. 2021 Dec 17;16(12):2776-2786. doi: 10.1021/acschembio.1c00623. Epub 2021 Nov 12.
Nonribosomal peptide synthetases (NRPSs) are typically multimodular enzymes that assemble amino acids or carboxylic acids into complex natural products. Here, we characterize a monomodular NRPS, PvfC, encoded by the () gene cluster that is essential for virulence and signaling in different bacterial species. PvfC exhibits a unique adenylation-thiolation-reductase (ATR) domain architecture that is understudied in bacteria. We show that the activity of PvfC is essential in the production of seven leucine-derived heterocyclic natural products, including two pyrazines, a pyrazinone, and a rare disubstituted imidazole, as well as three pyrazine -oxides that require an additional oxygenation step. Mechanistic studies reveal that PvfC, without a canonical peptide-forming domain, makes a dipeptide aldehyde intermediate en route to both the pyrazinone and imidazole. Our work identifies a novel biosynthetic route for the production of pyrazinones, an emerging class of signaling molecules and virulence factors. Our discovery also showcases the ability of monomodular NRPSs to generate amino acid- and dipeptide-aldehydes that lead to diverse natural products. The diversity-prone biosynthesis by the -encoded enzymes sets the stage for further understanding the functions of in bacterial cell-to-cell signaling.
非核糖体肽合成酶(NRPSs)通常是多模块酶,可将氨基酸或羧酸组装成复杂的天然产物。在这里,我们对编码 ()基因簇的单模块 NRPS,PvfC 进行了表征,该基因簇对不同细菌物种的毒力和信号转导至关重要。PvfC 表现出独特的氨酰化 -硫醇化 -还原酶(ATR)结构域架构,在细菌中研究较少。我们表明,PvfC 的活性对于七种亮氨酸衍生的杂环天然产物的产生是必需的,包括两种吡嗪,一种吡嗪酮和一种罕见的二取代咪唑,以及三种需要额外的氧化步骤的吡嗪氧化物。机理研究表明,PvfC 没有典型的肽形成结构域,在形成吡嗪酮和咪唑的过程中形成二肽醛中间产物。我们的工作确定了吡嗪酮产生的新生物合成途径,吡嗪酮是一类新兴的信号分子和毒力因子。我们的发现还展示了单模块 NRPSs 生成氨基酸和二肽醛的能力,这些醛可导致多种天然产物。由 编码的酶具有多样性的生物合成能力,为进一步了解 在细菌细胞间信号转导中的功能奠定了基础。