Suppr超能文献

容错与数据密集型资源调度和管理在云计算中的科学应用。

Fault-Tolerant and Data-Intensive Resource Scheduling and Management for Scientific Applications in Cloud Computing.

机构信息

Department of Computer Science and Information Technology, Hazara University, Mansehra 21300, Pakistan.

Department of Communication Technology and Networks, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia.

出版信息

Sensors (Basel). 2021 Oct 30;21(21):7238. doi: 10.3390/s21217238.

Abstract

Cloud computing is a fully fledged, matured and flexible computing paradigm that provides services to scientific and business applications in a subscription-based environment. Scientific applications such as Montage and CyberShake are organized scientific workflows with data and compute-intensive tasks and also have some special characteristics. These characteristics include the tasks of scientific workflows that are executed in terms of integration, disintegration, pipeline, and parallelism, and thus require special attention to task management and data-oriented resource scheduling and management. The tasks executed during pipeline are considered as bottleneck executions, the failure of which result in the wholly futile execution, which requires a fault-tolerant-aware execution. The tasks executed during parallelism require similar instances of cloud resources, and thus, cluster-based execution may upgrade the system performance in terms of make-span and execution cost. Therefore, this research work presents a cluster-based, fault-tolerant and data-intensive (CFD) scheduling for scientific applications in cloud environments. The CFD strategy addresses the data intensiveness of tasks of scientific workflows with cluster-based, fault-tolerant mechanisms. The Montage scientific workflow is considered as a simulation and the results of the CFD strategy were compared with three well-known heuristic scheduling policies: (a) MCT, (b) Max-min, and (c) Min-min. The simulation results showed that the CFD strategy reduced the make-span by 14.28%, 20.37%, and 11.77%, respectively, as compared with the existing three policies. Similarly, the CFD reduces the execution cost by 1.27%, 5.3%, and 2.21%, respectively, as compared with the existing three policies. In case of the CFD strategy, the SLA is not violated with regard to time and cost constraints, whereas it is violated by the existing policies numerous times.

摘要

云计算是一种成熟、灵活的计算模式,它以订阅为基础为科学和商业应用提供服务。像 Montage 和 CyberShake 这样的科学应用程序是具有数据和计算密集型任务的组织科学工作流,它们也有一些特殊的特征。这些特征包括以集成、分解、流水线和并行的方式执行的科学工作流的任务,因此需要特别注意任务管理和面向数据的资源调度和管理。流水线执行期间的任务被认为是瓶颈执行,如果失败,整个执行将完全白费,这需要容错感知执行。并行执行的任务需要类似的云资源实例,因此,基于集群的执行可以在运行时间和执行成本方面提高系统性能。因此,本研究工作提出了一种面向科学应用的基于集群的容错和数据密集型(CFD)调度策略。CFD 策略通过基于集群的容错机制解决了科学工作流任务的数据密集性。Montage 科学工作流被视为模拟,CFD 策略的结果与三种著名的启发式调度策略进行了比较:(a)MCT,(b)Max-min,和(c)Min-min。模拟结果表明,与现有的三种策略相比,CFD 策略分别将运行时间减少了 14.28%、20.37%和 11.77%。同样,CFD 分别将执行成本降低了 1.27%、5.3%和 2.21%,与现有的三种策略相比。在 CFD 策略的情况下,不会违反关于时间和成本约束的 SLA,而现有的策略则多次违反 SLA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f4/8587021/95d73c8db028/sensors-21-07238-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验