Suppr超能文献

区域增强网络在遥感图像语义分割中的应用。

Region-Enhancing Network for Semantic Segmentation of Remote-Sensing Imagery.

机构信息

College of Computer Science and Technology, University of Posts and Telecommunications, Chongqing 400065, China.

State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China.

出版信息

Sensors (Basel). 2021 Nov 3;21(21):7316. doi: 10.3390/s21217316.

Abstract

Semantic segmentation for high-resolution remote-sensing imagery (HRRSI) has become increasingly popular in machine vision in recent years. Most of the state-of-the-art methods for semantic segmentation of HRRSI usually emphasize the strong learning ability of deep convolutional neural network to model the contextual relationship in the image, which takes too much consideration on every pixel in images and subsequently causes the problem of overlearning. Annotation errors and easily confused features can also lead to the confusion problem while using the pixel-based methods. Therefore, we propose a new semantic segmentation network-the region-enhancing network (RE-Net)-to emphasize the regional information instead of pixels to solve the above problems. RE-Net introduces the regional information into the base network, to enhance the regional integrity of images and thus reduce misclassification. Specifically, the regional context learning procedure (RCLP) can learn the context relationship from the perspective of regions. The region correcting procedure (RCP) uses the pixel aggregation feature to recalibrate the pixel features in each region. In addition, another simple intra-network multi-scale attention module is introduced to select features at different scales by the size of the region. A large number of comparative experiments on four different public datasets demonstrate that the proposed RE-Net performs better than most of the state-of-the-art ones.

摘要

近年来,高分辨率遥感图像(HRRSI)的语义分割在机器视觉中变得越来越流行。用于 HRRSI 语义分割的大多数最先进方法通常强调深度卷积神经网络的强大学习能力,以对图像中的上下文关系进行建模,这对图像中的每个像素都考虑过多,从而导致过度学习的问题。注释错误和容易混淆的特征也会导致基于像素的方法在使用时出现混淆问题。因此,我们提出了一种新的语义分割网络——区域增强网络(RE-Net)——通过强调区域信息而不是像素来解决上述问题。RE-Net 将区域信息引入到基础网络中,以增强图像的区域完整性,从而减少误分类。具体来说,区域上下文学习过程(RCLP)可以从区域的角度学习上下文关系。区域校正过程(RCP)使用像素聚合特征来重新校准每个区域中的像素特征。此外,还引入了另一个简单的内部网络多尺度注意模块,通过区域的大小选择不同尺度的特征。在四个不同的公共数据集上进行的大量对比实验表明,所提出的 RE-Net 比大多数最先进的方法表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fd3/8587896/d9224de1faa6/sensors-21-07316-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验