Tran Quang Nhat, Vo Thuan Ngoc, Kim Il Tae, Kim Ji Hyeon, Lee Dal Ho, Park Sang Joon
Department of Chemical and Biological Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea.
Department of Electronics Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea.
Materials (Basel). 2021 Nov 3;14(21):6619. doi: 10.3390/ma14216619.
The rate capability and poor cycling stability of lithium-ion batteries (LIBs) are predominantly caused by the large volume expansion upon cycling and poor electrical conductivity of manganese dioxide (MnO), which also exhibits the highest theoretical capacity among manganese oxides. In this study, a nanocomposite of nanosized MnO and pyrolyzed nanocrystalline cellulose (CNC) was prepared with high electrical conductivity to enhance the electrochemical performance of LIBs. The nanocomposite electrode showed an initial discharge capacity of 1302 mAh g at 100 mA g and exhibited a high discharge capacity of 305 mAh g after 1000 cycles. Moreover, the MnO-CNC nanocomposite delivered a good rate capability of up to 10 A g and accommodated the large volume change upon repeated cycling tests.
锂离子电池(LIBs)的倍率性能和较差的循环稳定性主要是由循环过程中的大量体积膨胀以及二氧化锰(MnO)的低电导率导致的,而二氧化锰在锰氧化物中还具有最高的理论容量。在本研究中,制备了具有高电导率的纳米尺寸MnO与热解纳米晶纤维素(CNC)的纳米复合材料,以提高LIBs的电化学性能。该纳米复合电极在100 mA g下的初始放电容量为1302 mAh g,在1000次循环后仍表现出305 mAh g的高放电容量。此外,MnO-CNC纳米复合材料在高达10 A g的电流密度下具有良好的倍率性能,并且在反复循环测试中能够适应较大的体积变化。