Shao Lina, Tian Xin, Ji Shengxiang, Wang Hongda, Shi Yan
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
Sci Rep. 2021 Nov 12;11(1):22140. doi: 10.1038/s41598-021-01637-0.
The development of nanofacula array is an effective methods to improve the performance of Near-field Scanning Optical Microscopy (NSOM) and achieve high-throughput array scanning. The nanofacula array is realized by preparing metal nanopore array through the "two etching-one development" method of double-layer resists and the negative lift-off process after metal film coating. The shading property of metal film plays important rules in nanofacula array fabrication. We investigate the shading coefficient of three kinds of metal films (gold-palladium alloy (Au/Pd), platinum (Pt), chromium (Cr)) under different coating times, and 3.5 min Au/Pd film is determined as the candidate of the nanofacula array fabrication for its lower thickness (about 23 nm) and higher shading coefficient (≥ 90%). The nanofacula array is obtained by irradiating with white light (central wavelength of 500 nm) through the metal nanopore array (250/450 nm pore diameter, 2 μm pore spacing and 7 μm group spacing). Moreover, the finite difference and time domain (FDTD) simulation proves that the combination of nanopore array and microlens array achieves high-energy focused nanofacula array, which shows a 3.2 times enhancement of electric field. It provides a new idea for NSOM to realize fast super-resolution focusing facula array.
纳米光斑阵列的研制是提高近场扫描光学显微镜(NSOM)性能并实现高通量阵列扫描的有效方法。纳米光斑阵列是通过双层抗蚀剂的“两次蚀刻 - 一次显影”方法制备金属纳米孔阵列,并在涂覆金属膜后采用负性剥离工艺实现的。金属膜的遮光特性在纳米光斑阵列制造中起着重要作用。我们研究了三种金属膜(金钯合金(Au/Pd)、铂(Pt)、铬(Cr))在不同镀膜时间下的遮光系数,3.5分钟的Au/Pd膜因其较低的厚度(约23nm)和较高的遮光系数(≥90%)被确定为纳米光斑阵列制造的候选材料。通过金属纳米孔阵列(孔径250/450nm、孔间距2μm、组间距7μm)用白光(中心波长500nm)照射获得纳米光斑阵列。此外,时域有限差分(FDTD)模拟证明,纳米孔阵列和微透镜阵列的组合实现了高能聚焦纳米光斑阵列,电场增强了3.2倍。这为NSOM实现快速超分辨聚焦光斑阵列提供了新思路。