College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.
Radiology Department, Xiangya 3rd Hospital, Central South University, Changsha, China.
Brain Behav. 2021 Dec;11(12):e2414. doi: 10.1002/brb3.2414. Epub 2021 Nov 13.
Mild traumatic brain injury (mTBI) is usually caused by a bump, blow, or jolt to the head or penetrating head injury, and carries the risk of inducing cognitive disorders. However, identifying the biomarkers for the diagnosis of mTBI is challenging as evident abnormalities in brain anatomy are rarely found in patients with mTBI. In this study, we tested whether the alteration of functional network dynamics could be used as potential biomarkers to better diagnose mTBI. We propose a sparse dictionary learning framework to delineate spontaneous fluctuation of functional connectivity into the subject-specific time-varying evolution of a set of overlapping group-level sparse connectivity components (SCCs) based on the resting-state functional magnetic resonance imaging (fMRI) data from 31 mTBI patients in the early acute phase (<3 days postinjury) and 31 healthy controls (HCs). The identified SCCs were consistently distributed in the cohort of subjects without significant inter-group differences in connectivity patterns. Nevertheless, subject-specific temporal expression of these SCCs could be used to discriminate patients with mTBI from HCs with a classification accuracy of 74.2% (specificity 64.5% and sensitivity 83.9%) using leave-one-out cross-validation. Taken together, our findings indicate neuroimaging biomarkers for mTBI individual diagnosis based on the temporal expression of SCCs underlying time-resolved functional connectivity.
轻度创伤性脑损伤 (mTBI) 通常由头部碰撞、打击或颠簸或穿透性头部损伤引起,并存在引发认知障碍的风险。然而,由于 mTBI 患者的大脑解剖结构很少出现明显异常,因此确定 mTBI 的生物标志物具有挑战性。在这项研究中,我们测试了功能网络动态变化是否可以作为潜在的生物标志物,以更好地诊断 mTBI。我们提出了一种稀疏字典学习框架,根据 31 名早期急性(<3 天)mTBI 患者和 31 名健康对照者(HCs)的静息态功能磁共振成像(fMRI)数据,将功能连接的自发波动描绘为一组重叠的组级稀疏连接成分(SCCs)的随时间变化的演变。所识别的 SCCs在没有连接模式的组间显著差异的受试者队列中均匀分布。然而,这些 SCC 的特定于个体的时间表达可以用于使用留一法交叉验证从 HCs 中区分出 mTBI 患者,分类准确率为 74.2%(特异性为 64.5%,敏感性为 83.9%)。总之,我们的研究结果表明,基于 SCC 下的时间分辨功能连接的时间表达,可以为 mTBI 的个体诊断提供神经影像学生物标志物。