Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126 Napoli, Italy.
Department of Experimental Medicine, Section of Biotechnology, University of Campania "Luigi Vanvitelli", via de Crecchio 7, I-80138 Napoli, Italy.
Biomacromolecules. 2021 Dec 13;22(12):5151-5161. doi: 10.1021/acs.biomac.1c01112. Epub 2021 Nov 14.
The several interesting activities detected for fucosylated chondroitin sulfate (fCS) have fueled in the last years several efforts toward the obtainment of fCS oligosaccharides and low molecular weight (LMW) polysaccharides with a well-defined structure, in order to avoid the problems associated with the potential employment of native, sea cucumber sourced fCSs as a drug. Total synthesis and controlled depolymerization of the natural fCS polysaccharides are the main approaches to this aim; nonetheless, they present some limitations. These could be circumvented by semisynthesis, a strategy relying upon the regioselective fucosylation and sulfation of a microbial sourced polysaccharide sharing the same chondroitin backbone of fCS but devoid of any fucose (Fuc) and sulfate decoration on it. This approach is highly versatile, as it could open access also to fCS isomers carrying Fuc and sulfate groups at non-natural sites. Here we prepare for the first time some structurally homogeneous fCS isomers through a multistep procedure with a glycosylation reaction between a LMW polysaccharide acceptor and three different Fuc donors as key step. The obtained products were subjected to a detailed structural characterization by 2D-NMR. The conformational behavior was also investigated by NMR and molecular dynamics simulation methods and compared with data reported for natural fCS.
近年来,由于人们对岩藻糖基硫酸软骨素(fCS)的多种有趣活性的研究,促使人们致力于获得具有明确结构的 fCS 低聚糖和低分子量(LMW)多糖,以避免将天然海参来源的 fCS 作为药物使用所带来的问题。全合成和天然 fCS 多糖的可控降解是实现这一目标的主要方法;然而,它们存在一些局限性。通过半合成可以克服这些局限性,这种策略依赖于微生物来源的多糖的区域选择性岩藻糖基化和硫酸化,该多糖具有与 fCS 相同的软骨素骨架,但不含任何岩藻糖(Fuc)和硫酸基修饰。这种方法具有高度的通用性,因为它还可以为在非天然位置携带 Fuc 和硫酸基团的 fCS 异构体提供途径。在这里,我们首次通过多步反应制备了一些结构均一的 fCS 异构体,其中关键步骤是 LMW 多糖受体与三种不同的 Fuc 供体之间的糖苷化反应。通过二维 NMR 对获得的产物进行了详细的结构表征。还通过 NMR 和分子动力学模拟方法研究了它们的构象行为,并与天然 fCS 的报道数据进行了比较。