Suppr超能文献

在吸入气味期间,环路对嗅球僧帽细胞和丛状细胞的感觉驱动谷氨酸能驱动的贡献。

Circuit Contributions to Sensory-Driven Glutamatergic Drive of Olfactory Bulb Mitral and Tufted Cells During Odorant Inhalation.

机构信息

Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, United States.

Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, United States.

出版信息

Front Neural Circuits. 2021 Oct 27;15:779056. doi: 10.3389/fncir.2021.779056. eCollection 2021.

Abstract

In the mammalian olfactory bulb (OB), mitral/tufted (MT) cells respond to odorant inhalation with diverse temporal patterns that are thought to encode odor information. Much of this diversity is already apparent at the level of glutamatergic input to MT cells, which receive direct, monosynaptic excitatory input from olfactory sensory neurons (OSNs) as well as a multisynaptic excitatory drive glutamatergic interneurons. Both pathways are also subject to modulation by inhibitory circuits in the glomerular layer of the OB. To understand the role of direct OSN input vs. postsynaptic OB circuit mechanisms in shaping diverse dynamics of glutamatergic drive to MT cells, we imaged glutamate signaling onto MT cell dendrites in anesthetized mice while blocking multisynaptic excitatory drive with ionotropic glutamate receptor antagonists and blocking presynaptic modulation of glutamate release from OSNs with GABA receptor antagonists. GABA receptor blockade increased the magnitude of inhalation-linked glutamate transients onto MT cell apical dendrites without altering their inhalation-linked dynamics, confirming that presynaptic inhibition impacts the gain of OSN inputs to the OB. Surprisingly, blockade of multisynaptic excitation only modestly impacted glutamatergic input to MT cells, causing a slight reduction in the amplitude of inhalation-linked glutamate transients in response to low odorant concentrations and no change in the dynamics of each transient. The postsynaptic blockade also modestly impacted glutamate dynamics over a slower timescale, mainly by reducing adaptation of the glutamate response across multiple inhalations of odorant. These results suggest that direct glutamatergic input from OSNs provides the bulk of excitatory drive to MT cells, and that diversity in the dynamics of this input may be a primary determinant of the temporal diversity in MT cell responses that underlies odor representations at this stage.

摘要

在哺乳动物的嗅球(OB)中,僧帽细胞(MT)对气味吸入的反应表现出多样化的时间模式,这些模式被认为编码了气味信息。这种多样性的很大一部分已经在 MT 细胞的谷氨酸能传入水平上显现出来,这些细胞接收来自嗅觉感觉神经元(OSN)的直接单突触兴奋性输入,以及多突触兴奋性驱动谷氨酸能中间神经元。这两种途径也受到 OB 肾小球层抑制性回路的调制。为了了解直接 OSN 输入与 OB 回路机制在后突触对 MT 细胞谷氨酸能驱动的多样化动力学中的作用,我们在麻醉小鼠中对 MT 细胞树突上的谷氨酸信号进行成像,同时使用离子型谷氨酸受体拮抗剂阻断多突触兴奋性驱动,并用 GABA 受体拮抗剂阻断 OSN 释放谷氨酸的突触前调制。GABA 受体阻断增加了吸入相关谷氨酸瞬变到 MT 细胞顶树突的幅度,而不改变其吸入相关动力学,证实了突触前抑制对 OSN 输入到 OB 的增益的影响。令人惊讶的是,多突触兴奋的阻断仅适度地影响 MT 细胞的谷氨酸能传入,导致对低浓度气味的吸入相关谷氨酸瞬变幅度略有降低,而每个瞬变的动力学没有变化。后突触阻断也在较慢的时间尺度上适度地影响谷氨酸动力学,主要通过减少谷氨酸反应在多次气味吸入中的适应。这些结果表明,来自 OSN 的直接谷氨酸能输入为 MT 细胞提供了大部分的兴奋性驱动,而这种输入的动力学多样性可能是 MT 细胞反应时间多样性的主要决定因素,这种多样性是在这个阶段产生气味表示的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d373/8578712/50c467cba0e6/fncir-15-779056-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验