Maria-Solano Miguel A, Kinateder Thomas, Iglesias-Fernández Javier, Sterner Reinhard, Osuna Sílvia
CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, Girona 17003, Spain.
Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Science, Ewha Womans University, Seoul 03760, Republic of Korea.
ACS Catal. 2021 Nov 5;11(21):13733-13743. doi: 10.1021/acscatal.1c03950. Epub 2021 Oct 28.
Allostery is a central mechanism for the regulation of multi-enzyme complexes. The mechanistic basis that drives allosteric regulation is poorly understood but harbors key information for enzyme engineering. In the present study, we focus on the tryptophan synthase complex that is composed of TrpA and TrpB subunits, which allosterically activate each other. Specifically, we develop a rational approach for identifying key amino acid residues of TrpB distal from the active site. Those residues are predicted to be crucial for shifting the inefficient conformational ensemble of the isolated TrpB to a productive ensemble through intra-subunit allosteric effects. The experimental validation of the conformationally driven TrpB design demonstrates its superior stand-alone activity in the absence of TrpA, comparable to those enhancements obtained after multiple rounds of experimental laboratory evolution. Our work evidences that the current challenge of distal active site prediction for enhanced function in computational enzyme design has become within reach.
别构作用是调节多酶复合物的核心机制。驱动别构调节的机制基础尚不清楚,但蕴含着酶工程的关键信息。在本研究中,我们聚焦于由TrpA和TrpB亚基组成的色氨酸合酶复合物,它们通过别构作用相互激活。具体而言,我们开发了一种合理的方法来识别远离活性位点的TrpB的关键氨基酸残基。预计这些残基对于通过亚基内别构效应将分离的TrpB低效的构象集合转变为高效的构象集合至关重要。对构象驱动的TrpB设计的实验验证表明,在没有TrpA的情况下,其具有卓越的独立活性,与经过多轮实验性实验室进化后获得的增强效果相当。我们的工作证明,在计算酶设计中预测远端活性位点以增强功能这一当前挑战已触手可及。