Suppr超能文献

使用无监督聚类算法对股骨髋臼撞击症患者髋骨关节炎发展进行自动风险分层:来自罗切斯特流行病学项目的一项研究

Automated Risk Stratification of Hip Osteoarthritis Development in Patients With Femoroacetabular Impingement Using an Unsupervised Clustering Algorithm: A Study From the Rochester Epidemiology Project.

作者信息

Ko Sunho, Pareek Ayoosh, Jo Changwung, Han Hyuk-Soo, Lee Myung Chul, Krych Aaron J, Ro Du Hyun

机构信息

Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, Republic of Korea.

Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.

出版信息

Orthop J Sports Med. 2021 Nov 2;9(11):23259671211050613. doi: 10.1177/23259671211050613. eCollection 2021 Nov.

Abstract

BACKGROUND

Studies evaluating the natural history of femoroacetabular impingement (FAI) are limited.

PURPOSE

To stratify the risk of progression to osteoarthritis (OA) in patients with FAI using an unsupervised machine-learning algorithm, compare the characteristics of each subgroup, and validate the reproducibility of staging.

STUDY DESIGN

Cohort study (prognosis); Level of evidence, 2.

METHODS

A geographic database from the Rochester Epidemiology Project was used to identify patients with hip pain between 2000 and 2016. Medical charts were reviewed to obtain characteristic information, physical examination findings, and imaging details. The patient data were randomly split into 2 mutually exclusive sets: train set (70%) for model development and test set (30%) for validation. The data were transformed via Uniform Manifold Approximation and Projection and were clustered using Hierarchical Density-based Spatial Clustering of Applications with Noise.

RESULTS

The study included 1071 patients with a mean follow-up period of 24.7 ± 12.5 years. The patients were clustered into 5 subgroups based on train set results: patients in cluster 1 were in their early 20s (20.9 ± 9.6 years), female dominant (84%), with low body mass index (<19 ); patients in cluster 2 were in their early 20s (22.9 ± 6.7 years), female dominant (95%), and pincer-type FAI (100%) dominant; patients in cluster 3 were in their mid 20s (26.4 ± 9.7) and were mixed-type FAI dominant (92%); patients in cluster 4 were in their early 30s (32.7 ± 7.8), with high body mass index (≥29 ), and diabetes (17%); and patients in cluster 5 were in their early 30s (30.0 ± 9.1), with a higher percentage of males (43%) compared with the other clusters and with limited internal rotation (14%). Mean survival for clusters 1 to 5 was 17.9 ± 0.6, 18.7 ± 0.3, 17.1 ± 0.4, 15.0 ± 0.5, and 15.6 ± 0.5 years, respectively, in the train set. The survival difference was significant between clusters 1 and 4 ( = .02), 2 and 4 ( < .005), 2 and 5 ( = .01), and 3 and 4 ( < .005) in the train set and between clusters 2 and 5 ( = .03) and 3 and 4 ( = .01) in the test set. Cluster characteristics and prognosis was well reproduced in the test set.

CONCLUSION

Using the clustering algorithm, it was possible to determine the prognosis for OA progression in patients with FAI in the presence of conflicting risk factors acting in combination.

摘要

背景

评估股骨髋臼撞击症(FAI)自然病史的研究有限。

目的

使用无监督机器学习算法对FAI患者进展为骨关节炎(OA)的风险进行分层,比较各亚组的特征,并验证分期的可重复性。

研究设计

队列研究(预后);证据等级,2级。

方法

利用罗切斯特流行病学项目的地理数据库识别2000年至2016年间有髋关节疼痛的患者。查阅病历以获取特征信息、体格检查结果和影像学细节。将患者数据随机分为两个相互独立的数据集:用于模型开发的训练集(70%)和用于验证的测试集(30%)。通过均匀流形逼近和投影对数据进行变换,并使用基于密度的带噪声应用层次空间聚类进行聚类。

结果

该研究纳入了1071例患者,平均随访期为24.7±12.5年。根据训练集结果,患者被分为5个亚组:第1组患者为20岁出头(20.9±9.6岁),以女性为主(84%),体重指数较低(<19);第2组患者为20岁出头(22.9±6.7岁),以女性为主(95%),且以钳夹型FAI为主(100%);第3组患者为25岁左右(26.4±9.7岁),以混合型FAI为主(92%);第4组患者为30岁出头(32.7±7.8岁),体重指数较高(≥29),且患有糖尿病(17%);第5组患者为30岁出头(30.0±9.1岁),与其他组相比男性比例较高(43%),且内旋受限(14%)。在训练集中,第1至5组的平均生存期分别为17.9±0.6、18.7±0.3、17.1±0.4、15.0±0.5和15.6±0.5年。在训练集中,第1组和第4组(P = 0.02)、第2组和第4组(P < 0.005)、第2组和第5组(P = 0.01)以及第3组和第4组(P < 0.005)之间的生存差异具有统计学意义;在测试集中,第2组和第5组(P = 0.03)以及第3组和第4组(P = 0.01)之间的生存差异具有统计学意义。测试集中很好地再现了亚组特征和预后。

结论

使用聚类算法,可以在存在多种相互冲突的危险因素共同作用的情况下,确定FAI患者OA进展的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3eef/8573500/079b506349c0/10.1177_23259671211050613-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验