Wajid Sunaina, Kosar Naveen, Ullah Faizan, Gilani Mazhar Amjad, Ayub Khurshid, Muhammad Shabbir, Mahmood Tariq
Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
Department of Chemistry, University of Management and Technology (UMT), C11, Johar Town Lahore 54770, Pakistan.
ACS Omega. 2021 Oct 29;6(44):29852-29861. doi: 10.1021/acsomega.1c04349. eCollection 2021 Nov 9.
In this report, the geometric and electronic properties and static and dynamic hyperpolarizabilities of alkali metal-doped COLi organometallics are analyzed via density functional theory methods. The thermal stability of the considered complexes is examined through interaction energy ( ) calculations. Doping of alkali metal derives diffuse excess electrons, which generate the electride characteristics in the respective systems (electrons@complexant, e@M@COLi M = Li, Na, and K). The electronic density shifting is also supported by natural bond orbital charge analysis. These electrides are further investigated for their nonlinear optical (NLO) responses through static and dynamic hyperpolarizability analyses. The potassium-doped COLi (K@COLi) complex has high values of second- (β = 2.9 × 10 au) and third-order NLO responses (γ = 1.6 × 10 au) along with a high refractive index at 1064 nm, indicating that the NLO response of the corresponding complex increases at a higher wavelength. UV-vis absorption analysis is used to confirm the electronic excitations, which occur from the metal toward COLi. We assume that these newly designed organometallic electrides can be used in optical and optoelectronic fields for achieving better second-harmonic-generation-based NLO materials.
在本报告中,通过密度泛函理论方法分析了碱金属掺杂的COLi有机金属化合物的几何和电子性质以及静态和动态超极化率。通过相互作用能( )计算研究了所考虑配合物的热稳定性。碱金属的掺杂产生了弥散的多余电子,在各自的体系中产生了电子化物特性(电子@络合剂,e@M@COLi,M = Li、Na和K)。自然键轨道电荷分析也支持电子密度的转移。通过静态和动态超极化率分析进一步研究了这些电子化物的非线性光学(NLO)响应。钾掺杂的COLi(K@COLi)配合物具有较高的二阶(β = 2.9 × 10 au)和三阶NLO响应(γ = 1.6 × 10 au),以及在1064 nm处的高折射率,表明相应配合物的NLO响应在较高波长下增加。紫外可见吸收分析用于确认从金属到COLi发生的电子激发。我们假设这些新设计的有机金属电子化物可用于光学和光电子领域,以获得更好的基于二次谐波产生的NLO材料。