Department of Radiology, State University of New York at Stony Brook, Stony Brook, New York, USA.
Med Phys. 2022 Jan;49(1):107-128. doi: 10.1002/mp.15344. Epub 2021 Nov 29.
Scintillators and photoconductors used in energy integrating detectors (EIDs) have inherent variations in their imaging response to single-detected X-rays due to variations in X-ray energy deposition and secondary quanta generation and transport, which degrades DQE(f). The imaging response of X-ray scintillators to single X-rays may be recorded and studied using single X-ray imaging (SXI) experiments; however, no method currently exists for relating SXI experimental results to EID DQE(f). This work proposes a general analytical framework for computing and analyzing the DQE(f) performance of EIDs from single X-ray image ensembles using a spatial frequency-dependent pulse-height spectrum.
A spatial frequency (f)-dependent gain, , is defined as the Fourier transform of the imaging response of an EID to a single-detected X-ray. A f-dependent pulse-height spectrum, , is defined as the 2D probability density function of over the complex plane. is used to define a f-dependent Swank factor, A (f), which fully characterizes the DQE(f) degradation due to single X-ray noise. A (f) is analyzed in terms of its degradation due to Swank noise, variations in the frequency-dependent attenuation of , and noise in which occurs due to variations in the asymmetry in each single X-ray's imaging response. Three example imaging systems are simulated to demonstrate the impact of depth-dependent variation in , remote energy deposition, and a finite number of secondary quanta, on , A (f), MTF(f), and NPS(f)/NPS(0), which are computed from ensembles of single X-ray images. The same is also demonstrated by simulating a realistic imaging system; that is, a Gd O S-based EID. Using the latter imaging system, the convergence of A (f) estimates is investigated as a function of the number of detected X-rays per ensemble.
Depth-dependent variation resulted in A (f) degradation exclusively due to depth-dependent optical Swank noise and the Lubberts effect. Conversely, the majority of A (f) degradation caused by remote energy deposition and finite secondary quanta occurred due to variations in . When using input X-ray energies below the K-edge of Gd, variations in the frequency-dependent attenuation of accounted for the majority of A (f) degradation in the GOS-based EID, and very little Swank noise and variations in were observed. Above the K-edge, however, A (f) degradation due to Swank noise and variations in greatly increased. The convergence of A (f) was limited by variation in ; imaging systems with more variation in required more detected X-rays per ensemble.
An analytical framework is proposed that generalizes the pulse-height spectrum and Swank factor to arbitrary f. The impact of single X-ray noise sources, such as the Lubberts effect, remote energy deposition, and finite secondary quanta on detector performance, may be represented using , and quantified using A (f). The approach may be used to compute MTF(f), NPS(f), and DQE(f) from ensembles of single X-ray images and provides an additional tool to analyze proposed EID designs.
由于 X 射线能量沉积和二次量子的产生和传输的变化,用于能量积分探测器(EID)的闪烁体和光电导体会导致其对单个探测到的 X 射线的成像响应存在固有变化,从而降低了 DQE(f)。可以使用单次 X 射线成像(SXI)实验记录和研究 X 射线闪烁体对单个 X 射线的成像响应;然而,目前尚无方法将 SXI 实验结果与 EID DQE(f)相关联。这项工作提出了一种通用的分析框架,用于使用空间频率相关的脉冲高度谱来计算和分析来自单个 X 射线图像集合的 EID 的 DQE(f)性能。
定义了一个空间频率(f)相关的增益, ,作为 EID 对单个探测到的 X 射线的成像响应的傅里叶变换。定义了一个空间频率相关的脉冲高度谱, ,作为在复平面上的 的二维概率密度函数。 使用 定义了一个 f 相关的 Swank 因子,A(f),它完全描述了由于单个 X 射线噪声引起的 DQE(f)退化。A(f)根据 Swank 噪声、 的频率相关衰减的变化以及由于每个单个 X 射线成像响应的非对称性变化而引起的 中的噪声进行分析。模拟了三个示例成像系统,以演示深度相关的 变化、远程能量沉积和有限数量的二次量子对 、A(f)、MTF(f)和 NPS(f)/NPS(0)的影响,这些参数是从单个 X 射线图像的集合中计算得出的。通过模拟一个现实的成像系统(即基于 GdO S 的 EID)也证明了这一点。使用后一种成像系统,研究了 A(f)估计值随集合中每个图像的检测 X 射线数量的收敛情况。
深度相关的 变化仅导致由于深度相关的光学 Swank 噪声和 Lubberts 效应引起的 A(f)退化。相反,远程能量沉积和有限二次量子引起的 A(f)退化的大部分是由于 的变化引起的。当使用低于 Gd 的 K 边缘的输入 X 射线能量时, 的频率相关衰减的变化导致基于 GOS 的 EID 中的大部分 A(f)退化,并且观察到很少的 Swank 噪声和 的变化。然而,在 K 边缘以上,由于 Swank 噪声和 的变化引起的 A(f)退化大大增加。A(f)的收敛受到 的变化限制; 变化较大的成像系统需要每个集合中更多的检测到的 X 射线。
提出了一种分析框架,将脉冲高度谱和 Swank 因子推广到任意 f。可以使用 来表示单个 X 射线噪声源(如 Lubberts 效应、远程能量沉积和有限二次量子)对探测器性能的影响,并使用 A(f)来量化。该方法可用于从单个 X 射线图像的集合中计算 MTF(f)、NPS(f)和 DQE(f),并为分析拟议的 EID 设计提供了另一种工具。