Suppr超能文献

用于对抗性无监督域适应的跨域图卷积

Cross-Domain Graph Convolutions for Adversarial Unsupervised Domain Adaptation.

作者信息

Zhu Ronghang, Jiang Xiaodong, Lu Jiasen, Li Sheng

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Aug;34(8):3847-3858. doi: 10.1109/TNNLS.2021.3122899. Epub 2023 Aug 4.

Abstract

Unsupervised domain adaptation (UDA) has attracted increasing attention in recent years, which adapts classifiers to an unlabeled target domain by exploiting a labeled source domain. To reduce the discrepancy between source and target domains, adversarial learning methods are typically selected to seek domain-invariant representations by confusing the domain discriminator. However, classifiers may not be well adapted to such a domain-invariant representation space, as the sample- and class-level data structures could be distorted during adversarial learning. In this article, we propose a novel transferable feature learning approach on graphs (TFLG) for unsupervised adversarial domain adaptation (DA), which jointly incorporates sample- and class-level structure information across two domains. TFLG first constructs graphs for minibatch samples and identifies the classwise correspondence across domains. A novel cross-domain graph convolutional operation is designed to jointly align the sample- and class-level structures in two domains. Moreover, a memory bank is designed to further exploit the class-level information. Extensive experiments on benchmark datasets demonstrate the effectiveness of our approach compared to the state-of-the-art UDA methods.

摘要

无监督域适应(UDA)近年来受到越来越多的关注,它通过利用有标签的源域使分类器适应无标签的目标域。为了减少源域和目标域之间的差异,通常选择对抗学习方法,通过混淆域判别器来寻找域不变表示。然而,分类器可能无法很好地适应这样的域不变表示空间,因为在对抗学习过程中,样本级和类级的数据结构可能会被扭曲。在本文中,我们提出了一种用于无监督对抗域适应(DA)的基于图的新型可迁移特征学习方法(TFLG),该方法联合整合了两个域的样本级和类级结构信息。TFLG首先为小批量样本构建图,并识别跨域的类对应关系。设计了一种新颖的跨域图卷积操作,以联合对齐两个域中的样本级和类级结构。此外,还设计了一个记忆库来进一步利用类级信息。在基准数据集上进行的大量实验表明,与当前最先进的UDA方法相比,我们的方法是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验