IEEE Trans Pattern Anal Mach Intell. 2021 Jun;43(6):2047-2061. doi: 10.1109/TPAMI.2019.2962476. Epub 2021 May 11.
This paper proposes a new unsupervised domain adaptation approach called Collaborative and Adversarial Network (CAN), which uses the domain-collaborative and domain-adversarial learning strategies for training the neural network. The domain-collaborative learning strategy aims to learn domain specific feature representation to preserve the discriminability for the target domain, while the domain adversarial learning strategy aims to learn domain invariant feature representation to reduce the domain distribution mismatch between the source and target domains. We show that these two learning strategies can be uniformly formulated as domain classifier learning with positive or negative weights on the losses. We then design a collaborative and adversarial training scheme, which automatically learns domain specific representations from lower blocks in CNNs through collaborative learning and domain invariant representations from higher blocks through adversarial learning. Moreover, to further enhance the discriminability in the target domain, we propose Self-Paced CAN (SPCAN), which progressively selects pseudo-labeled target samples for re-training the classifiers. We employ a self-paced learning strategy such that we can select pseudo-labeled target samples in an easy-to-hard fashion. Additionally, we build upon the popular two-stream approach to extend our domain adaptation approach for more challenging video action recognition task, which additionally considers the cooperation between the RGB stream and the optical flow stream. We propose the Two-stream SPCAN (TS-SPCAN) method to select and reweight the pseudo labeled target samples of one stream (RGB/Flow) based on the information from the other stream (Flow/RGB) in a cooperative way. As a result, our TS-SPCAN model is able to exchange the information between the two streams. Comprehensive experiments on different benchmark datasets, Office-31, ImageCLEF-DA and VISDA-2017 for the object recognition task, and UCF101-10 and HMDB51-10 for the video action recognition task, show our newly proposed approaches achieve the state-of-the-art performance, which clearly demonstrates the effectiveness of our proposed approaches for unsupervised domain adaptation.
本文提出了一种新的无监督领域自适应方法,称为协作对抗网络(CAN),它使用领域协作和对抗学习策略来训练神经网络。领域协作学习策略旨在学习特定领域的特征表示,以保持目标领域的可辨别性,而领域对抗学习策略旨在学习领域不变的特征表示,以减少源域和目标域之间的域分布不匹配。我们表明,这两种学习策略可以统一地表示为域分类器学习,即在损失上使用正或负权重。然后,我们设计了一种协作和对抗训练方案,该方案通过协作学习从 CNN 的较低块自动学习特定领域的表示,通过对抗学习从较高块学习领域不变的表示。此外,为了进一步增强目标域中的辨别能力,我们提出了自步 CAN(SPCAN),它通过逐步选择伪标记的目标样本,重新训练分类器。我们采用自步学习策略,以便以容易到困难的方式选择伪标记的目标样本。此外,我们基于流行的双流方法,将我们的领域自适应方法扩展到更具挑战性的视频动作识别任务,该方法还考虑了 RGB 流和光流之间的协作。我们提出了双流 SPCAN(TS-SPCAN)方法,以基于另一个流(Flow/RGB)的信息以协作的方式选择和重新加权一个流(RGB/Flow)的伪标记目标样本。因此,我们的 TS-SPCAN 模型能够在两个流之间交换信息。在不同的基准数据集上进行了综合实验,包括对象识别任务的 Office-31、ImageCLEF-DA 和 VISDA-2017,以及视频动作识别任务的 UCF101-10 和 HMDB51-10,实验结果表明,我们提出的方法取得了最先进的性能,这清楚地证明了我们提出的方法在无监督领域自适应方面的有效性。