IEEE J Biomed Health Inform. 2022 Mar;26(3):1057-1067. doi: 10.1109/JBHI.2021.3128169. Epub 2022 Mar 7.
In this paper, we propose an end-to-end deep learning architecture, referred as MCG-Net, integrating convolutional neural network (CNN) with transformer-based global context block for fine-grained delineation and diagnostic classification of four cardiac events from magnetocardiogram (MCG) data, namely Q-, R-, S- and T-waves. MCG-Net takes advantage of a multi-resolution CNN backbone as well as the state-of-the-art (SOTA) transformer encoders that facilitate global temporal feature aggregation. Besides the novel network architecture, we introduce a multi-task learning scheme to achieve simultaneous delineation and classification. Specifically, the problem of MCG delineation is formulated as multi-class heatmap regression. Meanwhile, a binary diagnostic classification label as well as a duration are jointly estimated for each cardiac event using features that are temporally aligned by event heatmaps. The framework is evaluated on a clinical MCG dataset, containing data collected from 270 subjects with cardiac anomalies and 108 control subjects. We designed and conducted a two-fold cross-validation study to validate the proposed method and to compare its performance with the SOTA methods. Experimental results demonstrated that our method outperformed counterparts on both event delineation and diagnostic classification tasks, achieving respectively an average ECG-F1 of 0.987 and an average Event-F1 of 0.975 for MCG delineation, and an average accuracy of 0.870, an average sensitivity of 0.732, an average specificity of 0.914 and an average AUC of 0.903 for diagnostic classification. Comprehensive ablation experiments are additionally performed to investigate effectiveness of different network components.
在本文中,我们提出了一种端到端的深度学习架构,称为 MCG-Net,它将卷积神经网络(CNN)与基于转换器的全局上下文块集成在一起,用于从磁心电图(MCG)数据中精细描绘和诊断分类四种心脏事件,即 Q、R、S 和 T 波。MCG-Net 利用多分辨率 CNN 骨干网络和最先进的(SOTA)转换器编码器,便于全局时间特征聚合。除了新颖的网络架构外,我们还引入了一种多任务学习方案,以实现同时描绘和分类。具体来说,MCG 描绘问题被表述为多类热图回归。同时,使用通过事件热图时间对齐的特征,为每个心脏事件联合估计二进制诊断分类标签和持续时间。该框架在包含来自 270 名心脏异常患者和 108 名对照患者的数据的临床 MCG 数据集上进行了评估。我们设计并进行了两折交叉验证研究,以验证所提出的方法并将其性能与 SOTA 方法进行比较。实验结果表明,我们的方法在事件描绘和诊断分类任务上均优于对照组,分别实现了 MCG 描绘的平均 ECG-F1 为 0.987 和平均事件-F1 为 0.975,以及平均准确率为 0.870、平均敏感度为 0.732、平均特异性为 0.914 和平均 AUC 为 0.903 的诊断分类。此外,还进行了全面的消融实验,以研究不同网络组件的有效性。