Terbe Dániel, Orzó László, Zarándy Ákos
Opt Lett. 2021 Nov 15;46(22):5567-5570. doi: 10.1364/OL.440900.
We adopted an unpaired neural network training technique, namely CycleGAN, to generate bright-field microscope-like images from hologram reconstructions. The motivation for unpaired training in microscope applications is that the construction of paired/parallel datasets is cumbersome or sometimes not even feasible, for example, lensless or flow-through holographic measuring setups. Our results show that the proposed method is applicable in these cases and provides comparable results to the paired training. Furthermore, it has some favorable properties even though its metric scores are lower. The CycleGAN training results in sharper and-from this point of view-more realistic object reconstructions compared to the baseline paired setting. Finally, we show that a lower metric score of the unpaired training does not necessarily imply a worse image generation but a correct object synthesis, yet with a different focal representation.
我们采用了一种非配对神经网络训练技术,即循环生成对抗网络(CycleGAN),从全息重建中生成类似明场显微镜的图像。在显微镜应用中进行非配对训练的动机是,构建配对/并行数据集既繁琐,有时甚至不可行,例如无透镜或流通式全息测量装置。我们的结果表明,所提出的方法适用于这些情况,并且与配对训练提供了可比的结果。此外,尽管其度量分数较低,但它具有一些有利特性。与基线配对设置相比,循环生成对抗网络训练产生的物体重建更清晰,从这个角度来看也更逼真。最后,我们表明,非配对训练的较低度量分数并不一定意味着图像生成更差,而是意味着正确的物体合成,只是具有不同的焦点表示。