Suppr超能文献

基于统计和机器学习技术的响应面模型辅助下的海军蓝阳极氧化的多目标优化。

Multi-object optimization of Navy-blue anodic oxidation via response surface models assisted with statistical and machine learning techniques.

机构信息

Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, KP, Pakistan.

Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, KP, Pakistan.

出版信息

Chemosphere. 2022 Mar;291(Pt 2):132818. doi: 10.1016/j.chemosphere.2021.132818. Epub 2021 Nov 12.

Abstract

This study aims to model, analyze, and compare the electrochemical removal of Navy-blue dye (NB, %) and subsequent energy consumption (EC, Wh) using the integrated response surface modelling and optimization approaches. The Box-Behnken experimental design was exercised using current density, electrolyte concentration, pH and oxidation time as inputs, while NB removal and EC were recorded as responses for the implementation and analysis of multiple linear regression, support vector regression and artificial neural network models. The dual-response optimization using genetic algorithm generated multi-Pareto solutions for maximized NB removal at minimum energy cost, which were further ranked by employing the desirability function approach. The optimal parametric solution having total desirability of 0.804 is found when pH, current density, NaSO concentration and electrolysis time were 6.4, 11.89 mA cm, 0.055 M and 21.5 min, respectively. At these conditions, NB degradation and EC were 83.23% and 3.64 Wh, respectively. Sensitivity analyses revealed the influential patterns of variables on simultaneous optimization of NB removal and EC to be current density followed by treatment time and finally supporting electrolyte concentration. Statistical metrics of modeling and validation confirmed the accuracy of artificial neural network model followed by support vector regression and multiple linear regression anlaysis. The results revealed that statistical and computational modeling is an effective approach for the optimization of process variables of an electrochemical degradation process.

摘要

本研究旨在通过集成响应面建模和优化方法,对海军蓝染料(NB,%)的电化学去除及其后续能量消耗(EC,Wh)进行建模、分析和比较。采用电流密度、电解质浓度、pH 值和氧化时间作为输入,运用 Box-Behnken 实验设计,记录 NB 去除率和 EC 作为多元线性回归、支持向量回归和人工神经网络模型的实施和分析的响应。使用遗传算法进行双响应优化,生成在最小能耗下最大化 NB 去除率的多 Pareto 解,然后通过使用理想函数方法对其进行排序。当 pH 值、电流密度、NaSO4 浓度和电解时间分别为 6.4、11.89 mA cm、0.055 M 和 21.5 min 时,总理想度为 0.804 的最佳参数解被找到。在此条件下,NB 降解率和 EC 分别为 83.23%和 3.64 Wh。敏感性分析揭示了变量对 NB 去除率和 EC 同时优化的影响模式为电流密度、处理时间和支持电解质浓度。建模和验证的统计指标证实了人工神经网络模型的准确性,其次是支持向量回归和多元线性回归分析。结果表明,统计和计算建模是优化电化学降解过程工艺变量的有效方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验