Himwas C, Yordsri V, Thanachayanont C, Tchernycheva M, Panyakeow S, Kanjanachuchai S
Semiconductor Device Research Laboratory, Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand.
National Metal and Materials Technology Center, Thailand Science Park, 114 Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120, Thailand.
Nanotechnology. 2021 Dec 6;33(9). doi: 10.1088/1361-6528/ac39ca.
We report on the growth, structural, and optical properties of GaAs/GaAsPBi core-shell nanowires (NWs) synthesized by molecular beam epitaxy (MBE). The structure presents advantageous optical properties, in particular, for near- and mid-infrared optical applications. Scanning electron microscopy shows that although the stems of GaAs/GaAsP and GaAs/GaAsBi core-shell NWs preserve the hexagonal prism shape, the GaAs/GaAsPBi core-shell NWs develop a quasi-three-fold orientational symmetry affected by the hexagonal prismatic core. Detailed structural analyses of a GaAs/GaAsPBi core-shell stem show that it crystallized with zincblende structure with a nominal shell composition of GaAsPBi. Photoluminescence of GaAs/GaAsPBi core-shell NWs shows the luminescent peak at 1.02 eV with high internal quantum efficiency at room temperature (IQE∼ 6%) superior to those of MBE-grown GaAs core NWs and GaAsPBi multiple quantum wells earlier reported. Energy-dispersive x-ray spectroscopy performed on the GaAs/GaAsPBi core-shell NWs yields an estimated bandgap different from the optically measured value. We attribute this discrepancy to the NW compositional fluctuations that also may explain the high IQE.
我们报道了通过分子束外延(MBE)合成的GaAs/GaAsPBi核壳纳米线(NWs)的生长、结构和光学性质。该结构具有有利的光学性质,特别是对于近红外和中红外光学应用。扫描电子显微镜表明,尽管GaAs/GaAsP和GaAs/GaAsBi核壳纳米线的茎部保持六棱柱形状,但GaAs/GaAsPBi核壳纳米线呈现出受六棱柱形核影响的准三重取向对称性。对GaAs/GaAsPBi核壳茎部进行详细结构分析表明,它以闪锌矿结构结晶,名义壳层组成为GaAsPBi。GaAs/GaAsPBi核壳纳米线的光致发光在室温下显示出1.02 eV的发光峰,具有较高的内量子效率(IQE∼6%),优于先前报道的MBE生长的GaAs核纳米线和GaAsPBi多量子阱。对GaAs/GaAsPBi核壳纳米线进行的能量色散X射线光谱分析得出估计的带隙与光学测量值不同。我们将这种差异归因于纳米线的成分波动,这也可能解释了高内量子效率。