Department of Microbiology, The Ohio State Universitygrid.261331.4, Columbus, Ohio, USA.
mBio. 2021 Dec 21;12(6):e0271421. doi: 10.1128/mBio.02714-21. Epub 2021 Nov 16.
The bacterial cell envelope is the first line of defense and point of contact with the environment and other organisms. Envelope biogenesis is therefore crucial for the survival and physiology of bacteria and is often targeted by antimicrobials. Gram-negative bacteria have a multilayered envelope delimited by an inner and outer membrane (IM and OM, respectively). The OM is a barrier against many antimicrobials because of its asymmetric lipid structure, with phospholipids composing the inner leaflet and lipopolysaccharides (LPS) the outer leaflet. Since lipid synthesis occurs at the IM, phospholipids and LPS are transported across the cell envelope and asymmetrically assembled at the OM during growth. How phospholipids are transported to the OM remains unknown. Recently, the Escherichia coli protein YhdP has been proposed to participate in this process through an unknown mechanism. YhdP belongs to the AsmA-like clan and contains domains homologous to those found in lipid transporters. Here, we used genetics to investigate the six members of the AsmA-like clan of proteins in E. coli. Our data show that YhdP and its paralogs TamB and YdbH are redundant, but not equivalent, in performing an essential function in the cell envelope. Among the AsmA-like paralogs, only the combined loss of YhdP, TamB, and YdbH is lethal, and any of these three proteins is sufficient for growth. We also show that these proteins are required for OM lipid homeostasis and propose that they are the long-sought-after phospholipid transporters that are required for OM biogenesis. Gram-negative bacteria like Escherichia coli are characterized by having two membranes. Systems required for the biogenesis of the Gram-negative outer membrane have been identified except for that required for the transport of newly synthesized phospholipids from the inner to the outer membrane. The YhdP protein was previously implicated in this process. Here, we show that YhdP and its homologs TamB and YdbH are redundant in performing an essential function for growth and maintaining lipid homeostasis in the outer membrane. These proteins share a predicted structure with known eukaryotic lipid transporters. Based on our data and previous findings, we propose YhdP, TamB, and YdbH are the missing proteins that transport phospholipids to the outer membrane that have escaped identification because of redundancy.
细菌的细胞包膜是抵御环境和其他生物体侵害的第一道防线和接触点。因此,包膜的生物发生对于细菌的生存和生理功能至关重要,并且经常成为抗菌药物的作用靶点。革兰氏阴性细菌具有由内膜和外膜(分别为 IM 和 OM)界定的多层包膜。由于其不对称的脂质结构,OM 是许多抗菌药物的屏障,其中磷脂构成内膜,脂多糖(LPS)构成外膜。由于脂质合成发生在内膜,因此磷脂和 LPS 在生长过程中穿过细胞包膜并在外膜中不对称组装。磷脂如何转运到 OM 尚不清楚。最近,已经提出大肠杆菌蛋白 YhdP 通过未知机制参与此过程。 YhdP 属于 AsmA 样家族,包含与脂质转运蛋白中发现的同源结构域。在这里,我们使用遗传学方法研究了大肠杆菌中 AsmA 样蛋白家族的六个成员。我们的数据表明, YhdP 及其同源物 TamB 和 YdbH 在执行细胞包膜中的必需功能时是冗余的,但不是等效的。在 AsmA 样同源物中,只有 YhdP、TamB 和 YdbH 的联合缺失是致命的,并且这三种蛋白中的任何一种都足以生长。我们还表明,这些蛋白对于 OM 脂质动态平衡是必需的,并提出它们是用于 OM 生物发生所需的长期以来寻找的磷脂转运蛋白。革兰氏阴性细菌(如大肠杆菌)的特征是具有两层膜。除了用于将新合成的磷脂从内膜转运到外膜的系统外,已鉴定出用于革兰氏阴性外膜生物发生的系统。 YhdP 蛋白先前被认为参与了这个过程。在这里,我们表明 YhdP 及其同源物 TamB 和 YdbH 在执行生长所必需的功能和维持外膜脂质动态平衡方面是冗余的。这些蛋白与已知的真核脂质转运蛋白具有预测的结构。基于我们的数据和以前的发现,我们提出 YhdP、TamB 和 YdbH 是将磷脂转运到外膜的缺失蛋白,由于冗余而未被识别。