Suppr超能文献

Multi-resBind:一种基于残差网络的多标签分类器,用于体内 RNA 结合预测和偏好可视化。

Multi-resBind: a residual network-based multi-label classifier for in vivo RNA binding prediction and preference visualization.

机构信息

Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo, 169-8555, Japan.

Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo, 169-8555, Japan.

出版信息

BMC Bioinformatics. 2021 Nov 15;22(1):554. doi: 10.1186/s12859-021-04430-y.

Abstract

BACKGROUND

Protein-RNA interactions play key roles in many processes regulating gene expression. To understand the underlying binding preference, ultraviolet cross-linking and immunoprecipitation (CLIP)-based methods have been used to identify the binding sites for hundreds of RNA-binding proteins (RBPs) in vivo. Using these large-scale experimental data to infer RNA binding preference and predict missing binding sites has become a great challenge. Some existing deep-learning models have demonstrated high prediction accuracy for individual RBPs. However, it remains difficult to avoid significant bias due to the experimental protocol. The DeepRiPe method was recently developed to solve this problem via introducing multi-task or multi-label learning into this field. However, this method has not reached an ideal level of prediction power due to the weak neural network architecture.

RESULTS

Compared to the DeepRiPe approach, our Multi-resBind method demonstrated substantial improvements using the same large-scale PAR-CLIP dataset with respect to an increase in the area under the receiver operating characteristic curve and average precision. We conducted extensive experiments to evaluate the impact of various types of input data on the final prediction accuracy. The same approach was used to evaluate the effect of loss functions. Finally, a modified integrated gradient was employed to generate attribution maps. The patterns disentangled from relative contributions according to context offer biological insights into the underlying mechanism of protein-RNA interactions.

CONCLUSIONS

Here, we propose Multi-resBind as a new multi-label deep-learning approach to infer protein-RNA binding preferences and predict novel interactions. The results clearly demonstrate that Multi-resBind is a promising tool to predict unknown binding sites in vivo and gain biology insights into why the neural network makes a given prediction.

摘要

背景

蛋白质与 RNA 的相互作用在许多调控基因表达的过程中起着关键作用。为了了解潜在的结合偏好,已经使用紫外线交联和免疫沉淀(CLIP)基于方法在体内鉴定了数百种 RNA 结合蛋白(RBPs)的结合位点。利用这些大规模的实验数据来推断 RNA 结合偏好并预测缺失的结合位点已成为一项巨大的挑战。一些现有的深度学习模型已经证明了对单个 RBP 的高预测准确性。然而,由于实验方案,仍然难以避免显著的偏差。DeepRiPe 方法最近被开发出来,通过将多任务或多标签学习引入该领域来解决这个问题。然而,由于神经网络结构较弱,该方法的预测能力尚未达到理想水平。

结果

与 DeepRiPe 方法相比,我们的 Multi-resBind 方法在使用相同的大规模 PAR-CLIP 数据集进行比较时,在增加接收者操作特征曲线下面积和平均精度方面表现出了实质性的改进。我们进行了广泛的实验来评估各种类型的输入数据对最终预测准确性的影响。相同的方法用于评估损失函数的效果。最后,采用修改后的积分梯度来生成归因图。根据上下文解开的模式提供了有关蛋白质-RNA 相互作用的潜在机制的生物学见解。

结论

在这里,我们提出了 Multi-resBind 作为一种新的多标签深度学习方法,用于推断蛋白质-RNA 结合偏好并预测新的相互作用。结果清楚地表明,Multi-resBind 是一种很有前途的工具,可以预测体内未知的结合位点,并深入了解神经网络做出给定预测的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07ca/8594109/48d4f9facd1d/12859_2021_4430_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验