School of Information and Electrical Engineering, Ludong University, Yantai, China.
Proteins. 2023 Aug;91(8):1032-1041. doi: 10.1002/prot.26489. Epub 2023 Mar 28.
RNA-binding proteins (RBPs) play significant roles in many biological life activities, many algorithms and tools are proposed to predict RBPs for researching biological mechanisms of RNA-protein binding sites. Deep learning algorithms based on traditional machine learning get better result for predicting RBPs. Recently, deep learning method fused with attention mechanism has attracted huge attention in many fields and gets competitive result. Thus, attention mechanism module may also improve model performance for predicting RNA-protein binding sites. In this study, we propose convolutional residual multi-head self-attention network (CRMSNet) that combines convolutional neural network (CNN), ResNet, and multi-head self-attention blocks to find RBPs for RNA sequence. First, CRMSNet incorporates convolutional neural networks, recurrent neural networks, and multi-head self-attention block. Second, CRMSNet can draw binding motif pictures from the convolutional layer parameters. Third, attention mechanism module combines the local and global RNA sequence information for capturing long sequence feature. CRMSNet gets competitive AUC (area under the receiver operating characteristic [ROC] curve) result in a large-scale dataset RBP-24. And CRMSNet experiment result is also compared with other state-of-the-art methods. The source code of our proposed CRMSNet method can be found in https://github.com/biomg/CRMSNet.
RNA 结合蛋白 (RBPs) 在许多生物生命活动中发挥着重要作用,许多算法和工具被提出来预测 RBPs,以研究 RNA-蛋白质结合位点的生物学机制。基于传统机器学习的深度学习算法在预测 RBPs 方面取得了更好的结果。最近,融合注意力机制的深度学习方法在许多领域引起了广泛关注,并取得了有竞争力的结果。因此,注意力机制模块也可能提高预测 RNA-蛋白质结合位点的模型性能。在这项研究中,我们提出了卷积残差多头自注意力网络(CRMSNet),它结合了卷积神经网络(CNN)、ResNet 和多头自注意力块,用于从 RNA 序列中寻找 RBPs。首先,CRMSNet 结合了卷积神经网络、循环神经网络和多头自注意力块。其次,CRMSNet 可以从卷积层参数中提取结合基序图像。第三,注意力机制模块结合了局部和全局 RNA 序列信息,以捕获长序列特征。CRMSNet 在大规模数据集 RBP-24 中取得了有竞争力的 AUC(接受者操作特征曲线下的面积)结果。并且还将 CRMSNet 的实验结果与其他最先进的方法进行了比较。我们提出的 CRMSNet 方法的源代码可以在 https://github.com/biomg/CRMSNet 找到。