Suppr超能文献

应用反向疫苗学和免疫信息学策略鉴定福氏志贺菌疫苗候选株

Application of Reverse Vaccinology and Immunoinformatic Strategies for the Identification of Vaccine Candidates Against Shigella flexneri.

机构信息

School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia.

Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia.

出版信息

Methods Mol Biol. 2022;2414:17-35. doi: 10.1007/978-1-0716-1900-1_2.

Abstract

Reverse vaccinology (RV) was first introduced by Rappuoli for the development of an effective vaccine against serogroup B Neisseria meningitidis (MenB). With the advances in next generation sequencing technologies, the amount of genomic data has risen exponentially. Since then, the RV approach has widely been used to discover potential vaccine protein targets by screening whole genome sequences of pathogens using a combination of sophisticated computational algorithms and bioinformatic tools. In contrast to conventional vaccine development strategies, RV offers a novel method to facilitate rapid vaccine design and reduces reliance on the traditional, relatively tedious, and labor-intensive approach based on Pasteur"s principles of isolating, inactivating, and injecting the causative agent of an infectious disease. Advances in biocomputational techniques have remarkably increased the significance for the rapid identification of the proteins that are secreted or expressed on the surface of pathogens. Immunogenic proteins which are able to induce the immune response in the hosts can be predicted based on the immune epitopes present within the protein sequence. To date, RV has successfully been applied to develop vaccines against a variety of infectious pathogens. In this chapter, we apply a pipeline of bioinformatic programs for identification of Shigella flexneri potential vaccine candidates as an illustration immunoinformatic tools available for RV.

摘要

反向疫苗学(RV)最初是由拉普乌利(Rappuoli)提出的,用于开发针对 B 群脑膜炎奈瑟菌(MenB)的有效疫苗。随着下一代测序技术的进步,基因组数据呈指数级增长。从那时起,RV 方法已广泛用于通过使用复杂的计算算法和生物信息学工具组合筛选病原体的全基因组序列来发现潜在的疫苗蛋白靶标。与传统的疫苗开发策略相比,RV 提供了一种新方法,可以促进快速疫苗设计,并减少对基于巴斯德(Pasteur)分离、灭活和注射传染病病原体的传统、相对繁琐和劳动密集型方法的依赖。生物计算技术的进步极大地提高了快速识别病原体表面分泌或表达的蛋白质的重要性。基于蛋白质序列中存在的免疫表位,可以预测能够在宿主中诱导免疫反应的免疫原性蛋白质。迄今为止,RV 已成功应用于开发针对多种感染性病原体的疫苗。在本章中,我们应用了一系列生物信息程序来鉴定福氏志贺菌的潜在疫苗候选物,作为 RV 可用的免疫信息学工具的一个示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验