Iyer K S, Acharya A S
Rockefeller University, New York, NY 10021.
Proc Natl Acad Sci U S A. 1987 Oct;84(20):7014-8. doi: 10.1073/pnas.84.20.7014.
Selective condensation of the unprotected fragments of alpha-globin--namely, alpha 1-30 and alpha 31-141--is catalyzed by Staphylococcus aureus V8 protease in the presence of 25% 1-propanol. The propensity of 1-propanol to induce the alpha-helical conformation and to generate a "native-like" topology for the polypeptide chain has been now investigated in an attempt to understand the molecular basis of this enzyme-catalyzed stereospecific condensation. Removal of heme from the alpha-chain decreases the overall alpha-helical conformation of the protein considerably. A significant amount of the alpha-helical conformation is restored in the presence of 25% 1-propanol and the digestion of alpha-globin by V8 protease becomes more selective concomitant with the increase in helicity. V8 protease digestion of alpha-globin at pH 6.0 and 4 degrees C occurs at Glu-30, Asp-47, Glu-27, and Glu-23 in the absence of 1-propanol. In the presence of 25% 1-propanol, the digestion is selective to the peptide bond of Glu-30. This selectivity appears to be a characteristic feature of the native conformation of alpha-chain (polypeptide chain with bound heme). 1-Propanol induces the alpha-helical conformation into RNase S peptide also. However, this increased helical conformation did not protect the RNase S peptide from V8 protease digestion at the Glu-9-Arg-10 peptide bond. RNase S peptide is an alpha-helical conformation in RNase S, an interacting fragment-complementing system of S protein and S peptide. S peptide is resistant to V8 protease hydrolysis in this conformation. Thus, the resistance of a peptide bond in a segment of a protein to protease digestion appears to be a consequence of the secondary structure as well as the tertiary interactions of this segment with the rest of the molecule. The results suggest that the 1-propanol induces alpha-helical conformation into segments of alpha-globin as well as packing of these helices in a native-like topology.
在25%丙醇存在的情况下,金黄色葡萄球菌V8蛋白酶催化α-珠蛋白未受保护片段(即α1 - 30和α31 - 141)的选择性缩合。现已研究了丙醇诱导α-螺旋构象并为多肽链生成“类似天然”拓扑结构的倾向,以试图理解这种酶催化立体特异性缩合的分子基础。从α链上去除血红素会显著降低蛋白质的整体α-螺旋构象。在25%丙醇存在的情况下,大量的α-螺旋构象得以恢复,并且随着螺旋度的增加,V8蛋白酶对α-珠蛋白的消化变得更具选择性。在没有丙醇的情况下,pH 6.0和4℃条件下V8蛋白酶对α-珠蛋白的消化发生在Glu - 30、Asp - 47、Glu - 27和Glu - 23处。在25%丙醇存在的情况下,消化对Glu - 30的肽键具有选择性。这种选择性似乎是α链(结合有血红素的多肽链)天然构象的一个特征。丙醇也能诱导核糖核酸酶S肽形成α-螺旋构象。然而,这种增加的螺旋构象并不能保护核糖核酸酶S肽在Glu - 9 - Arg - 10肽键处免受V8蛋白酶的消化。核糖核酸酶S肽在核糖核酸酶S中呈α-螺旋构象,核糖核酸酶S是S蛋白和S肽的相互作用片段互补系统。在这种构象下,S肽对V8蛋白酶水解具有抗性。因此,蛋白质片段中肽键对蛋白酶消化的抗性似乎是该片段二级结构以及与分子其余部分三级相互作用的结果。结果表明,丙醇诱导α-珠蛋白片段形成α-螺旋构象,并使这些螺旋以类似天然的拓扑结构堆积。