Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, United States.
Program in Neuroscience, Harvard Medical School, Boston, United States.
Elife. 2021 Nov 17;10:e72919. doi: 10.7554/eLife.72919.
Insulin-induced hypoglycemia is a major treatment barrier in type-1 diabetes (T1D). Accordingly, it is important that we understand the mechanisms regulating the circulating levels of glucagon. Varying glucose over the range of concentrations that occur physiologically between the fed and fuel-deprived states (8 to 4 mM) has no significant effect on glucagon secretion in the perfused mouse pancreas or in isolated mouse islets (in vitro), and yet associates with dramatic increases in plasma glucagon. The identity of the systemic factor(s) that elevates circulating glucagon remains unknown. Here, we show that arginine-vasopressin (AVP), secreted from the posterior pituitary, stimulates glucagon secretion. Alpha-cells express high levels of the vasopressin 1b receptor (V1bR) gene (). Activation of AVP neurons in vivo increased circulating copeptin (the C-terminal segment of the AVP precursor peptide) and increased blood glucose; effects blocked by pharmacological antagonism of either the glucagon receptor or V1bR. AVP also mediates the stimulatory effects of hypoglycemia produced by exogenous insulin and 2-deoxy-D-glucose on glucagon secretion. We show that the A1/C1 neurons of the medulla oblongata drive AVP neuron activation in response to insulin-induced hypoglycemia. AVP injection increased cytoplasmic Ca in alpha-cells (implanted into the anterior chamber of the eye) and glucagon release. Hypoglycemia also increases circulating levels of AVP/copeptin in humans and this hormone stimulates glucagon secretion from human islets. In patients with T1D, hypoglycemia failed to increase both copeptin and glucagon. These findings suggest that AVP is a physiological systemic regulator of glucagon secretion and that this mechanism becomes impaired in T1D.
胰岛素诱导的低血糖是 1 型糖尿病 (T1D) 的主要治疗障碍。因此,了解调节胰高血糖素循环水平的机制非常重要。在喂食和饥饿状态之间发生的生理范围内的葡萄糖浓度变化(8 至 4mM)对灌注小鼠胰腺或分离的小鼠胰岛(体外)中的胰高血糖素分泌没有显著影响,但与血浆胰高血糖素的显著增加相关。升高循环胰高血糖素的系统性因素的身份仍然未知。在这里,我们表明,来自垂体后叶的精氨酸加压素(AVP)刺激胰高血糖素分泌。α细胞表达高水平的加压素 1b 受体 (V1bR) 基因 (). 体内激活 AVP 神经元会增加循环 copeptin(AVP 前体肽的 C 末端片段)并增加血糖;这些作用被胰高血糖素受体或 V1bR 的药理学拮抗剂阻断。AVP 还介导外源性胰岛素和 2-脱氧-D-葡萄糖引起的低血糖对胰高血糖素分泌的刺激作用。我们表明,延髓的 A1/C1 神经元在胰岛素诱导的低血糖时驱动 AVP 神经元的激活。AVP 注射增加了植入眼前房的α细胞中的细胞质 Ca2+并释放胰高血糖素。低血糖还会增加人类循环中的 AVP/copeptin 水平,这种激素刺激人胰岛中的胰高血糖素分泌。在 T1D 患者中,低血糖既不能增加 copeptin 也不能增加胰高血糖素。这些发现表明 AVP 是胰高血糖素分泌的生理系统性调节剂,并且这种机制在 T1D 中受损。