College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
Environ Sci Technol. 2021 Dec 7;55(23):16088-16098. doi: 10.1021/acs.est.1c03784. Epub 2021 Nov 17.
Sulfidated zero-valent iron (S-ZVI) enhances the degradation of chlorinated hydrocarbon (CHC) in contaminated groundwater. Despite numerous studies of S-ZVI, a versatile strategy to improve its dechlorination kinetics, electron efficiency (ε), and dechlorination capacity is still needed. Here, we used heteroatom incorporation of N(C) and S by ball-milling of microscale ZVI with melamine and sulfur via nitridation and sulfidation to synthesize S-N(C)-mZVI particles that contain reactive Fe-N(C) and FeS species. Sulfidation and nitridation synergistically increased the trichloroethene (TCE) dechlorination rate, with reaction constants of 2.98 × 10 L·h·m by S-N(C)-mZVI, compared to 1.77 × 10 and 8.15 × 10 L·h·m by S-mZVI and N(C)-mZVI, respectively. Data show that sulfidation suppressed the reductive dissociation of N(C) from S-N(C)-mZVI, which stabilized the reactive Fe-N(C) and reserved electrons for TCE dechlorination. In addition to lowering H production, S-N(C)-mZVI dechlorinated TCE to less reduced products (e.g., acetylene), contributing to the material's higher ε and dechlorination capacity. This synergistic effect on TCE degradation can be extended to other recalcitrant CHCs (e.g., chloroform) in both deionized and groundwater. This multiheteroatom incorporation approach to optimize ZVI for groundwater remediation provides a basis for further advances in reactive material synthesis.
硫化零价铁(S-ZVI)增强了受污染地下水中氯化碳氢化合物(CHC)的降解。尽管对 S-ZVI 进行了大量研究,但仍需要一种通用策略来提高其脱氯动力学、电子效率(ε)和脱氯容量。在这里,我们通过将微尺度 ZVI 与三聚氰胺和硫一起进行球磨,通过氮化和硫化来引入 N(C)和 S 的杂原子,合成了含有反应性 Fe-N(C)和 FeS 物种的 S-N(C)-mZVI 颗粒。硫化和氮化协同作用提高了三氯乙烯(TCE)的脱氯速率,S-N(C)-mZVI 的反应常数为 2.98×10 L·h·m,而 S-mZVI 和 N(C)-mZVI 的反应常数分别为 1.77×10 和 8.15×10 L·h·m。数据表明,硫化抑制了 S-N(C)-mZVI 中 N(C)的还原解离,从而稳定了反应性 Fe-N(C)并为 TCE 脱氯保留了电子。除了降低 H 产量外,S-N(C)-mZVI 还将 TCE 脱氯为还原程度较低的产物(例如乙炔),这有助于提高材料的 ε 和脱氯容量。这种对 TCE 降解的协同效应可以扩展到去离子水和地下水中其他难降解的 CHC(例如氯仿)。这种多杂原子结合的方法优化了 ZVI 用于地下水修复,为反应性材料合成的进一步发展提供了基础。