Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrocial and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
Langmuir. 2021 Nov 30;37(47):13890-13902. doi: 10.1021/acs.langmuir.1c02379. Epub 2021 Nov 17.
Laser-scribed graphene electrodes (LSGEs) have attracted great attention for the development of electrochemical (bio)sensors due to their excellent electronic properties, large surface area, and high porosity, which enhances the electrons' transfer rate. An increasing active surface area and defect sites are the quickest way to amplify the electrochemical sensing attributes of the electrodes. Here, we have found that the activation procedure coupled to the electrodeposition of metal nanoparticles resulted in a significant amplification of the active area and the analytical performance. This preliminary study is supported by the demonstration of the simultaneous electrochemical sensing of dopamine (DA) and uric acid (UA) by the electrochemically activated LSGEs (LSGEs). Furthermore, the electrodeposition of two different metal nanoparticles, gold (Au) and silver (Ag), was performed in multiple combinations on working and reference electrodes to investigate the enhancement in the electrochemical response of LSGEs. Current enhancements of 32, 27, and 35% were observed from LSGE* with WE:Au/RE:LSG/CE:LSGE, WE:Au/RE:Au/CE:LSGE, and WE:Au/RE:Ag/CE:LSGE, compared to the same combinations of LSGEs without any surface activation. A homemade and practical potentiostat, KAUSTat, was used in these electrochemical depositions in this study. Among all of the combinations, the surface area was increased 1.6-, 2.0-, and 1.2-fold for WE:Au/RE:LSG/CE:LSGE, WE:Au/RE:Au/CE:LSGE, and WE:Au/RE:Ag/CE:LSGE prepared from LSGE*s, respectively. To evaluate the analytical performance, DA and UA were detected simultaneously in the presence of ascorbic acid. The LODs of DA and UA are calculated to be ∼0.8 and ∼0.6 μM, respectively. Hence, this study has the potential to open new insights into new surface activation strategies with a combination of one-step nanostructured metal depositions by a custom-made potentiostat. This novel strategy could be an excellent and straightforward method to enhance the electrochemical transducer sensitivity for various electrochemical sensing applications.
激光刻蚀石墨烯电极 (LSGE) 因其优异的电子性能、大的表面积和高的孔隙率而引起了人们的极大关注,这增强了电子的传递速率。增加活性表面积和缺陷位点是放大电极电化学传感属性的最快方法。在这里,我们发现,与金属纳米粒子的电沉积相结合的激活程序导致活性面积和分析性能的显著放大。这项初步研究得到了通过电化学激活 LSGE(LSGE*)同时电化学感应多巴胺 (DA) 和尿酸 (UA) 的演示的支持。此外,在工作电极和参比电极上进行了两种不同的金属纳米粒子(金 (Au) 和银 (Ag))的多组合电沉积,以研究 LSGE电化学响应的增强。与没有任何表面激活的相同 LSGE 组合相比,观察到来自 LSGE的 WE:Au/RE:LSG/CE:LSGE、WE:Au/RE:Au/CE:LSGE 和 WE:Au/RE:Ag/CE:LSGE 的电流增强分别为 32%、27%和 35%。在这项研究中,使用了自制的实用型电化学工作站 KAUSTat 进行这些电化学沉积。在所有组合中,LSGE*制备的 WE:Au/RE:LSG/CE:LSGE、WE:Au/RE:Au/CE:LSGE 和 WE:Au/RE:Ag/CE:LSGE 的表面积分别增加了 1.6 倍、2.0 倍和 1.2 倍。为了评估分析性能,在存在抗坏血酸的情况下同时检测 DA 和 UA。DA 和 UA 的 LOD 分别计算为约 0.8 和约 0.6 μM。因此,这项研究有可能为通过定制的电化学工作站进行一步纳米结构化金属沉积的组合提供新的表面激活策略提供新的见解。这种新策略可能是增强各种电化学传感应用的电化学换能器灵敏度的一种极好且简单的方法。