Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada.
Anal Chem. 2021 Nov 30;93(47):15712-15719. doi: 10.1021/acs.analchem.1c03617. Epub 2021 Nov 17.
RNA-cleaving DNAzymes and their multicomponent nucleic acid enzymes (MNAzymes) have been successfully used to detect nucleic acids and proteins. The appropriate split of the catalytic cores of DNAzymes is critical to the formation of MNAzymes with high catalytic activities. However, for protein detection, no systematic investigation has been made on the effects of the split locations and secondary structures of MNAzymes on the catalytic activities of the cleavage reaction. We systematically studied how split locations and secondary structures affect the activity of the MNAzymes that catalyze multiple cleavage steps. We engineered the MNAzymes on the basis of the RNA-cleaving DNAzyme 10-23 as a model system. We designed 28 pairs of MNAzymes, representing 14 different split locations and two secondary structures: the three-arm and the four-arm structures. By comparing the multiple turnover numbers () of the 28 MNAzymes, we showed that the split location between the seventh cytosine and the eighth thymine of the catalytic core region and the four-arm structure resulted in optimum catalytic activity. Binding-induced DNA assembly of the optimized MNAzymes enabled sensitive detection of two model protein targets, demonstrating promising potential of the binding-assembled MNAzymes for protein analysis. The strategy of binding-assembled MNAzymes and systematic studies measuring multiple turnover numbers () provide a new approach to studying other partial (split) DNAzymes and engineering better MNAzymes for the detection of specific proteins.
RNA 切割型 DNA 酶及其多组分核酸酶 (MNAzymes) 已成功用于检测核酸和蛋白质。适当分割 DNA 酶的催化核心对于形成具有高催化活性的 MNAzymes 至关重要。然而,对于蛋白质检测,尚未对 MNAzymes 的分裂位置和二级结构对切割反应催化活性的影响进行系统研究。我们系统地研究了分裂位置和二级结构如何影响催化多个切割步骤的 MNAzymes 的活性。我们以 RNA 切割型 DNA 酶 10-23 为模型系统,设计了 28 对 MNAzymes,代表了 14 种不同的分裂位置和两种二级结构:三臂结构和四臂结构。通过比较 28 种 MNAzymes 的多次转化数 (kcat),我们表明催化核心区域第七个胞嘧啶和第八个胸腺嘧啶之间的分裂位置和四臂结构导致了最佳的催化活性。优化后的 MNAzymes 的结合诱导 DNA 组装实现了两种模型蛋白靶标的灵敏检测,证明了结合组装的 MNAzymes 在蛋白质分析方面具有很大的应用潜力。结合组装的 MNAzymes 策略和系统研究测量多次转化数 (kcat) 为研究其他部分 (分裂) DNA 酶和工程更好的 MNAzymes 以检测特定蛋白质提供了一种新方法。