文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

生物工程策略在呼吸道病毒疾病疫苗开发中的应用。

Bioengineering Strategies for Developing Vaccines against Respiratory Viral Diseases.

机构信息

Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India.

Department of Microbiology and Cell Biology, Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, India.

出版信息

Clin Microbiol Rev. 2022 Jan 19;35(1):e0012321. doi: 10.1128/CMR.00123-21. Epub 2021 Nov 17.


DOI:10.1128/CMR.00123-21
PMID:34788128
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8597982/
Abstract

Respiratory viral pathogens like influenza and coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused outbreaks leading to millions of deaths. Vaccinations are, to date, the best and most economical way to control such outbreaks and have been highly successful for several pathogens. Currently used vaccines for respiratory viral pathogens are primarily live attenuated or inactivated and can risk reversion to virulence or confer inadequate immunity. The recent trend of using potent biomolecules like DNA, RNA, and protein antigenic components to synthesize vaccines for diseases has shown promising results. Still, it remains challenging to translate due to their high susceptibility to degradation during storage and after delivery. Advances in bioengineering technology for vaccine design have made it possible to control the physicochemical properties of the vaccines for rapid synthesis, heightened antigen presentation, safer formulations, and more robust immunogenicity. Bioengineering techniques and materials have been used to synthesize several potent vaccines, approved or in trials, against coronavirus disease 2019 (COVID-19) and are being explored for influenza, SARS, and Middle East respiratory syndrome (MERS) vaccines as well. Here, we review bioengineering strategies such as the use of polymeric particles, liposomes, and virus-like particles in vaccine development against influenza and coronaviruses and the feasibility of adopting these technologies for clinical use.

摘要

呼吸道病毒病原体,如流感病毒和冠状病毒(如严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)),已经引发了导致数百万人死亡的疫情爆发。疫苗接种是迄今为止控制此类疫情爆发的最佳和最经济的方法,并且在几种病原体方面取得了巨大成功。目前用于呼吸道病毒病原体的疫苗主要是减毒活疫苗或灭活疫苗,可能有恢复毒力或提供不足免疫的风险。最近,使用 DNA、RNA 和蛋白质抗原成分等有效生物分子来合成疫苗治疗疾病的趋势显示出了有希望的结果。然而,由于它们在储存和输送后容易降解,因此仍然具有挑战性。疫苗设计的生物工程技术的进步使得控制疫苗的物理化学特性成为可能,从而实现快速合成、增强抗原呈递、更安全的配方和更强的免疫原性。生物工程技术和材料已被用于合成几种针对 2019 年冠状病毒病(COVID-19)的有效疫苗,这些疫苗已经获得批准或正在进行临床试验,并且也正在探索用于流感、非典和中东呼吸综合征(MERS)疫苗的技术。在这里,我们综述了生物工程策略,例如使用聚合物颗粒、脂质体和类病毒颗粒来开发针对流感和冠状病毒的疫苗,以及采用这些技术进行临床应用的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3587/8597982/0c46d888791d/cmr.00123-21-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3587/8597982/2a606a42c9cc/cmr.00123-21-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3587/8597982/68f68b4f3c30/cmr.00123-21-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3587/8597982/57f1010b31f3/cmr.00123-21-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3587/8597982/1c9601aa1230/cmr.00123-21-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3587/8597982/889cb4867ecf/cmr.00123-21-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3587/8597982/0c46d888791d/cmr.00123-21-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3587/8597982/2a606a42c9cc/cmr.00123-21-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3587/8597982/68f68b4f3c30/cmr.00123-21-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3587/8597982/57f1010b31f3/cmr.00123-21-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3587/8597982/1c9601aa1230/cmr.00123-21-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3587/8597982/889cb4867ecf/cmr.00123-21-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3587/8597982/0c46d888791d/cmr.00123-21-f006.jpg

相似文献

[1]
Bioengineering Strategies for Developing Vaccines against Respiratory Viral Diseases.

Clin Microbiol Rev. 2022-1-19

[2]
[Technical guidelines for seasonal influenza vaccination in China (2022-2023)].

Zhonghua Yu Fang Yi Xue Za Zhi. 2022-10-6

[3]
Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development.

EBioMedicine. 2020-4-2

[4]
Insights into COVID-19 Vaccine Development Based on Immunogenic Structural Proteins of SARS-CoV-2, Host Immune Responses, and Herd Immunity.

Cells. 2021-10-29

[5]
COVID-19: Coronavirus Vaccine Development Updates.

Front Immunol. 2020

[6]
Techniques for Developing and Assessing Immune Responses Induced by Synthetic DNA Vaccines for Emerging Infectious Diseases.

Methods Mol Biol. 2022

[7]
[Technical guidelines for seasonal influenza vaccination in China (2023-2024)].

Zhonghua Liu Xing Bing Xue Za Zhi. 2023-10-10

[8]
Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus.

Avian Pathol. 2003-12

[9]
Advances in the design and development of SARS-CoV-2 vaccines.

Mil Med Res. 2021-12-16

[10]
Advances in mRNA and other vaccines against MERS-CoV.

Transl Res. 2022-4

引用本文的文献

[1]
A novel approach to designing viral precision vaccines applied to SARS-CoV-2.

Front Cell Infect Microbiol. 2024

[2]
Immunomodulatory biomaterials against bacterial infections: Progress, challenges, and future perspectives.

Innovation (Camb). 2023-8-28

[3]
Respiratory illness virus infections with special emphasis on COVID-19.

Eur J Med Res. 2022-11-8

[4]
Respiratory mucosal immunity against SARS-CoV-2 after mRNA vaccination.

Sci Immunol. 2022-10-28

[5]
Transient Expression of Glycosylated SARS-CoV-2 Antigens in .

Plants (Basel). 2022-4-18

[6]
Combined Subcutaneous-Intranasal Immunization With Epitope-Based Antigens Elicits Binding and Neutralizing Antibody Responses in Serum and Mucosae Against PRRSV-2 and SARS-CoV-2.

Front Immunol. 2022

本文引用的文献

[1]
Safety, immunogenicity, and efficacy of a COVID-19 vaccine (NVX-CoV2373) co-administered with seasonal influenza vaccines: an exploratory substudy of a randomised, observer-blinded, placebo-controlled, phase 3 trial.

Lancet Respir Med. 2022-2

[2]
INO-4800 DNA vaccine induces neutralizing antibodies and T cell activity against global SARS-CoV-2 variants.

NPJ Vaccines. 2021-10-14

[3]
Different dose regimens of a SARS-CoV-2 recombinant spike protein vaccine (NVX-CoV2373) in younger and older adults: A phase 2 randomized placebo-controlled trial.

PLoS Med. 2021-10

[4]
Safety and immunogenicity of an mRNA-lipid nanoparticle vaccine candidate against SARS-CoV-2 : A phase 1 randomized clinical trial.

Wien Klin Wochenschr. 2021-9

[5]
Live Virus Neutralisation of the 501Y.V1 and 501Y.V2 SARS-CoV-2 Variants following INO-4800 Vaccination of Ferrets.

Front Immunol. 2021

[6]
Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine.

N Engl J Med. 2021-9-23

[7]
Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant.

N Engl J Med. 2021-5-20

[8]
BNT162b2 mRNA COVID-19 vaccine induces antibodies of broader cross-reactivity than natural infection, but recognition of mutant viruses is up to 10-fold reduced.

Allergy. 2021-9

[9]
Insights into Terminal Sterilization Processes of Nanoparticles for Biomedical Applications.

Molecules. 2021-4-3

[10]
mRNA-based SARS-CoV-2 vaccine candidate CVnCoV induces high levels of virus-neutralising antibodies and mediates protection in rodents.

NPJ Vaccines. 2021-4-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索