Suppr超能文献

南美气候和遥相关指数分析。

Analysis of South American climate and teleconnection indices.

机构信息

Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.

Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.

出版信息

J Contam Hydrol. 2022 Jan;244:103915. doi: 10.1016/j.jconhyd.2021.103915. Epub 2021 Nov 3.

Abstract

Oceanic heat anomalies affect climate in remote regions through the atmospheric cycle. South America (SA) was the first region found associated with EI Niño, which affects the fishery, agriculture, forestry, and livestock industry of SA. As approximately 60% of the total water is used for agriculture, climate changes in SA caused by ocean anomalies have led to the variability of available water, especially for irrigation water. Where the precipitation is low and/or the temperature is high, the availability and quality of water resources are under pressure. For instance, droughts associated with La Niña severely limited water supply and irrigation requirements between 25°S - 40°S in west-central Argentina and central Chile. In order to study the relationship between ocean variability and the climate of SA, 19 teleconnection indices (TI) related to Ocean abnormity are considered. The 19 indices are: the sea surface temperature (SST) and their anomaly in 4 Niño regions (SST1 + 2, SST3, SST3.4, SST4, ANOM1 + 2, ANOM3, ANOM3.4, ANOM4), Southern Oscillation Index (SOI), Oceanic Niño Index (ONI), Outgoing Longwave Radiation (OLR), Arctic Oscillation (AO), North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), Pacific-North America (PNA), Atlantic Multi-decadal Oscillation (AMO), West and East of Indian Ocean Dipole (IODW, IODE), and the difference between IODW and IODE (IODd). High-resolution gridded climate data (1982-2016) from the Global Precipitation Climatology Centre (GPCC), the Climate Prediction Center (CPC), and the National Centers for Environmental Prediction (NCEP) are applied for correlation analyses. The results show that the 89.4% area of South American climate has a significant correlation with the SST in Niño region 1 + 2, the mean correlation coefficient is 0.55 for NCEP precipitation and 0.54 for CPC temperature. The lag duration for the remote correlation is around 2-3 months. It is the first attempt to analyze the correlation relationship based on 19 TIs, which can provide comprehensive insight into the climate of SA at a high-resolution scale. These findings are helpful for identifying the sensitive factors that affect climate in SA, for projecting the climate variables of SA, and for managing the irrigation water resources of SA.

摘要

海洋热量异常通过大气循环影响遥远地区的气候。南美洲(SA)是第一个被发现与厄尔尼诺现象有关的地区,厄尔尼诺现象会影响 SA 的渔业、农业、林业和畜牧业。由于大约 60%的总水量用于农业,因此 SA 中由海洋异常引起的气候变化导致了可用水资源的变化,特别是灌溉用水。在降水较少和/或温度较高的地区,水资源的可用性和质量面临压力。例如,与拉尼娜现象相关的干旱严重限制了阿根廷中西部和智利中部 25°S-40°S 之间的供水和灌溉需求。为了研究海洋变化与 SA 气候之间的关系,考虑了 19 个与海洋异常相关的遥相关指数(TI)。这 19 个指数包括:海表温度(SST)及其在 4 个厄尔尼诺区(SST1+2、SST3、SST3.4、SST4)的异常、南方涛动指数(SOI)、海洋厄尔尼诺指数(ONI)、长波辐射出射量(OLR)、北极涛动(AO)、北大西洋涛动(NAO)、太平洋十年涛动(PDO)、太平洋-北美(PNA)、大西洋多年代际振荡(AMO)、印度洋西部和东部偶极子(IODW、IODE)以及IODW 和 IODE 之间的差异(IODd)。应用高分辨率格点气候数据(1982-2016 年),来自全球降水气候学中心(GPCC)、气候预测中心(CPC)和美国国家环境预报中心(NCEP),进行相关分析。结果表明,南美洲气候的 89.4%区域与厄尔尼诺 1+2 区的 SST 显著相关,NCEP 降水的平均相关系数为 0.55,CPC 温度的平均相关系数为 0.54。远程相关的滞后时间约为 2-3 个月。这是首次尝试基于 19 个 TI 分析相关关系,可以提供对 SA 高分辨率气候的全面了解。这些发现有助于确定影响 SA 气候的敏感因素,预测 SA 的气候变量,并管理 SA 的灌溉水资源。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验