Suppr超能文献

基于 SPME-LC/MS 的血清代谢组学生物标志物分析用于鉴别卵巢癌组织学亚型:一项初步研究。

SPME-LC/MS-based serum metabolomic phenotyping for distinguishing ovarian cancer histologic subtypes: a pilot study.

机构信息

Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.

出版信息

Sci Rep. 2021 Nov 17;11(1):22428. doi: 10.1038/s41598-021-00802-9.

Abstract

Epithelial ovarian cancer (EOC) is the most common cause of death from gynecological cancer. The outcomes of EOC are complicated, as it is often diagnosed late and comprises several heterogenous subtypes. As such, upfront treatment can be highly challenging. Although many significant advances in EOC management have been made over the past several decades, further work must be done to develop early detection tools capable of distinguishing between the various EOC subtypes. In this paper, we present a sophisticated analytical pipeline based on solid-phase microextraction (SPME) and three orthogonal LC/MS acquisition modes that facilitates the comprehensive mapping of a wide range of analytes in serum samples from patients with EOC. PLS-DA multivariate analysis of the metabolomic data was able to provide clear discrimination between all four main EOC subtypes: serous, endometrioid, clear cell, and mucinous carcinomas. The prognostic performance of discriminative metabolites and lipids was confirmed via multivariate receiver operating characteristic (ROC) analysis (AUC value > 88% with 20 features). Further pathway analysis using the top 57 dysregulated metabolic features showed distinct differences in amino acid, lipid, and steroids metabolism among the four EOC subtypes. Thus, metabolomic profiling can serve as a powerful tool for complementing histology in classifying EOC subtypes.

摘要

上皮性卵巢癌 (EOC) 是妇科癌症死亡的主要原因。EOC 的预后较为复杂,因为它通常被诊断较晚,且包含多种异质亚型。因此,前期治疗极具挑战性。尽管过去几十年 EOC 管理方面取得了许多重大进展,但仍需要进一步努力开发能够区分各种 EOC 亚型的早期检测工具。在本文中,我们提出了一种基于固相微萃取 (SPME) 和三种正交 LC/MS 采集模式的复杂分析流程,该流程有助于全面绘制 EOC 患者血清样本中广泛分析物的图谱。对代谢组学数据的 PLS-DA 多变量分析能够在所有四种主要的 EOC 亚型(浆液性、子宫内膜样、透明细胞和黏液性癌)之间提供明确的区分。通过多变量接收器操作特征 (ROC) 分析(20 个特征的 AUC 值 > 88%)确认了区分代谢物和脂质的预后性能。使用前 57 个失调代谢特征进行的进一步途径分析显示,在四种 EOC 亚型中,氨基酸、脂质和类固醇代谢存在明显差异。因此,代谢组学分析可以作为补充组织学进行 EOC 亚型分类的有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5037/8599860/ba4dbf18940e/41598_2021_802_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验