Suppr超能文献

通过非局部有源超材料实现的宽带非互易线性声学

Broadband nonreciprocal linear acoustics through a non-local active metamaterial.

作者信息

Sasmal Aritra, Geib Nathan, Popa Bogdan-Ioan, Grosh Karl

机构信息

Department of Mechanical Engineering, University of Michigan.

Department of Mechanical Engineering, University of Michigan and Department of Biomedical Engineering, University of Michigan.

出版信息

New J Phys. 2020 Jun;22(6). doi: 10.1088/1367-2630/ab8aad.

Abstract

The ability to create linear systems that manifest broadband nonreciprocal wave propagation would provide for exquisite control over acoustic signals for electronic filtering in communication and noise control. Acoustic nonreciprocity has predominately been achieved by approaches that introduce nonlinear interaction, mean-flow biasing, smart skins, and spatio-temporal parametric modulation into the system. Each approach suffers from at least one of the following drawbacks: the introduction of modulation tones, narrow band filtering, and the interruption of mean flow in fluid acoustics. We now show that an acoustic media that is non-local and active provides a new means to break reciprocity in a linear fashion without these deleterious effects. We realize this media using a distributed network of interlaced subwavelength sensor-actuator pairs with unidirectional signal transport. We exploit this new design space to create a stable metamaterial with non-even dispersion relations and electronically tunable nonreciprocal behavior over a broad range of frequencies.

摘要

能够创建表现出宽带非互易波传播的线性系统,将为通信和噪声控制中的电子滤波提供对声信号的精确控制。声学非互易性主要是通过将非线性相互作用、平均流偏置、智能表皮和时空参数调制引入系统的方法来实现的。每种方法都至少存在以下缺点之一:引入调制音、窄带滤波以及流体声学中平均流的中断。我们现在表明,一种非局部且有源的声学介质提供了一种以线性方式打破互易性而无这些有害影响的新方法。我们使用具有单向信号传输的交错亚波长传感器 - 致动器对的分布式网络来实现这种介质。我们利用这个新的设计空间来创建一种具有非均匀色散关系且在很宽频率范围内具有电子可调非互易行为的稳定超材料。

相似文献

1
Broadband nonreciprocal linear acoustics through a non-local active metamaterial.
New J Phys. 2020 Jun;22(6). doi: 10.1088/1367-2630/ab8aad.
3
Efficient nonreciprocal mode transitions in spatiotemporally modulated acoustic metamaterials.
Sci Adv. 2021 Nov 5;7(45):eabj1198. doi: 10.1126/sciadv.abj1198. Epub 2021 Nov 3.
4
Realisation of broadband two-dimensional nonreciprocal acoustics using an active acoustic metasurface.
J Acoust Soc Am. 2024 Aug 1;156(2):1231-1240. doi: 10.1121/10.0028227.
5
Active synthesis of a gyroscopic-nonreciprocal acoustic metamaterial.
J Acoust Soc Am. 2020 Sep;148(3):1271. doi: 10.1121/10.0001815.
6
Realisation of nonreciprocal transmission and absorption using wave-based active noise control.
JASA Express Lett. 2022 May;2(5):054801. doi: 10.1121/10.0010454.
7
Active nonreciprocal metamaterial using an eigen-structure assignment control strategy.
J Acoust Soc Am. 2020 Apr;147(4):2656. doi: 10.1121/10.0001157.
8
Nonreciprocal control and cooling of phonon modes in an optomechanical system.
Nature. 2019 Apr;568(7750):65-69. doi: 10.1038/s41586-019-1061-2. Epub 2019 Apr 3.
9
Observation of Nonreciprocal Wave Propagation in a Dynamic Phononic Lattice.
Phys Rev Lett. 2018 Nov 9;121(19):194301. doi: 10.1103/PhysRevLett.121.194301.
10
Nonreciprocity in Bianisotropic Systems with Uniform Time Modulation.
Phys Rev Lett. 2020 Dec 31;125(26):266102. doi: 10.1103/PhysRevLett.125.266102.

引用本文的文献

2
Frozen sound: An ultra-low frequency and ultra-broadband non-reciprocal acoustic absorber.
Nat Commun. 2023 Jul 7;14(1):4028. doi: 10.1038/s41467-023-39727-4.
3
Avalanches during epithelial tissue growth; Uniform Growth and a drosophila eye disc model.
PLoS Comput Biol. 2022 Mar 18;18(3):e1009952. doi: 10.1371/journal.pcbi.1009952. eCollection 2022 Mar.

本文引用的文献

1
Non-reciprocal robotic metamaterials.
Nat Commun. 2019 Oct 10;10(1):4608. doi: 10.1038/s41467-019-12599-3.
2
Observation of Nonreciprocal Wave Propagation in a Dynamic Phononic Lattice.
Phys Rev Lett. 2018 Nov 9;121(19):194301. doi: 10.1103/PhysRevLett.121.194301.
4
Non-reciprocal and highly nonlinear active acoustic metamaterials.
Nat Commun. 2014 Feb 27;5:3398. doi: 10.1038/ncomms4398.
5
Sound isolation and giant linear nonreciprocity in a compact acoustic circulator.
Science. 2014 Jan 31;343(6170):516-9. doi: 10.1126/science.1246957.
6
Sound and heat revolutions in phononics.
Nature. 2013 Nov 14;503(7475):209-17. doi: 10.1038/nature12608.
7
Active acoustical impedance using distributed electrodynamical transducers.
J Acoust Soc Am. 2009 Feb;125(2):882-94. doi: 10.1121/1.3026329.
8
Unidimensional modeling of multi-layered piezoelectric transducer structures.
IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(3):667-77. doi: 10.1109/58.677611.
9
The piezoelectric semiconductor and acoustoelectronic device development in the sixties.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 May;52(5):737-45. doi: 10.1109/tuffc.2005.1503961.
10
A cochlear model using feed-forward outer-hair-cell forces.
Hear Res. 1995 Jun;86(1-2):132-46. doi: 10.1016/0378-5955(95)00064-b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验