Suppr超能文献

随着水通过相变增强平衡CO吸附,Cs-RHO从最差变为最佳。

Cs-RHO Goes from Worst to Best as Water Enhances Equilibrium CO Adsorption via Phase Change.

作者信息

Xu Le, Okrut Alexander, Tate Gregory L, Ohnishi Ryohji, Wu Kun-Lin, Xie Dan, Kulkarni Ambarish, Takewaki Takahiko, Monnier John R, Katz Alexander

机构信息

Department of Chemical and Biomolecular Engineering, University of California, Berkeley MC 1462, California 94720, United States.

Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States.

出版信息

Langmuir. 2021 Nov 30;37(47):13903-13908. doi: 10.1021/acs.langmuir.1c02430. Epub 2021 Nov 18.

Abstract

The strong affinity of water to zeolite adsorbents has made adsorption of CO from humid gas mixtures such as flue gas nearly impossible under equilibrated conditions. Here, in this manuscript, we describe a unique cooperative adsorption mechanism between HO and Cs cations on Cs-RHO zeolite, which actually facilitates the equilibrium adsorption of CO under humid conditions. Our data demonstrate that, at a relative humidity of 5%, Cs-RHO adsorbs 3-fold higher amounts of CO relative to dry conditions, at a temperature of 30 °C and CO pressure of 1 bar. A comparative investigation of univalent cation-exchanged RHO zeolites with H, Li, Na, K, Rb, and Cs shows an increase of equilibrium CO adsorption under humid versus dry conditions to be unique to Cs-RHO. In situ powder X-ray diffraction indicates the appearance of a new phase with 3̅ symmetry after HO saturation of Cs-RHO. A mixed-cation exchanged NaCs-RHO exhibits similar phase transitions after humid CO adsorption; however, we found no evidence of cooperativity between Cs and Na cations in adsorption, in single-component HO and CO adsorption. We hypothesize based on previous Rietveld refinements of CO adsorption in Cs-RHO zeolite that the observed phase change is related to solvation of extra-framework Cs cations by HO. In the case of Cs-RHO, molecular modeling results suggest that hydration of these cations favors their migration from an original D8R position to S8R sites. We posit that this movement enables a trapdoor mechanism by which CO can interact with Cs at S8R sites to access the α-cage.

摘要

水与沸石吸附剂的强亲和力使得在平衡条件下从烟道气等潮湿气体混合物中吸附一氧化碳几乎不可能。在此手稿中,我们描述了HO和Cs阳离子在Cs-RHO沸石上独特的协同吸附机制,这实际上促进了潮湿条件下CO的平衡吸附。我们的数据表明,在30°C和1 bar的CO压力下,相对湿度为5%时,Cs-RHO吸附的CO量相对于干燥条件高出3倍。对用H、Li、Na、K、Rb和Cs进行单价阳离子交换的RHO沸石的比较研究表明,与干燥条件相比,潮湿条件下平衡CO吸附量的增加是Cs-RHO独有的。原位粉末X射线衍射表明,Cs-RHO的HO饱和后出现了具有3̅对称性的新相。混合阳离子交换的NaCs-RHO在潮湿CO吸附后表现出类似的相变;然而,在单组分HO和CO吸附中,我们没有发现Cs和Na阳离子在吸附方面协同作用的证据。基于之前对Cs-RHO沸石中CO吸附的Rietveld精修,我们假设观察到的相变与骨架外Cs阳离子被HO溶剂化有关。在Cs-RHO的情况下,分子模拟结果表明,这些阳离子的水合作用有利于它们从原来的D8R位置迁移到S8R位点。我们认为,这种移动实现了一种活板门机制,通过该机制CO可以在S8R位点与Cs相互作用以进入α笼。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验