Department of Novel Aerospace Materials, Delft University of Technology, Delft 2629 HS, The Netherlands.
Department of Catalysis Engineering, Delft University of Technology, Delft 2629 HZ, The Netherlands.
ACS Appl Mater Interfaces. 2023 Jun 21;15(24):29186-29194. doi: 10.1021/acsami.3c04561. Epub 2023 Jun 9.
In order to capture and separate CO from the air or flue gas streams through nanoporous adsorbents, the influence of the humidity in these streams has to be taken into account as it hampers the capture process in two main ways: (1) water preferentially binds to CO adsorption sites and lowers the overall capacity, and (2) water causes hydrolytic degradation and pore collapse of the porous framework. Here, we have used a water-stable polyimide covalent organic framework (COF) in N/CO/HO breakthrough studies and assessed its performance under varying levels of relative humidity (RH). We discovered that at limited relative humidity, the competitive binding of HO over CO is replaced by cooperative adsorption. For some conditions, the CO capacity was significantly higher under humid versus dry conditions (, a 25% capacity increase at 343 K and 10% RH). These results in combination with FT-IR studies on equilibrated COFs at controlled RH values allowed us to assign the effect of cooperative adsorption to CO being adsorbed on single-site adsorbed water. Additionally, once water cluster formation sets in, loss of CO capacity is inevitable. Finally, the polyimide COF used in this research retained performance after a total exposure time of >75 h and temperatures up to 403 K. This research provides insight in how cooperative CO-HO can be achieved and as such provides directions for the development of CO physisorbents that can function in humid streams.
为了通过纳米多孔吸附剂从空气中或烟道气中捕获和分离 CO,必须考虑这些气流中湿度的影响,因为它主要通过以下两种方式阻碍捕获过程:(1)水优先与 CO 吸附位结合,从而降低整体容量,以及 (2)水会导致多孔骨架的水解降解和孔坍塌。在这里,我们在 N/CO/HO 突破研究中使用了一种水稳定的聚酰亚胺共价有机框架 (COF),并评估了其在不同相对湿度 (RH) 水平下的性能。我们发现,在有限的相对湿度下,HO 对 CO 的竞争结合被协同吸附所取代。对于某些条件,在潮湿条件下 CO 的容量明显高于干燥条件下的容量(例如,在 343 K 和 10% RH 下,容量增加了 25%)。这些结果结合在受控 RH 值下对平衡 COF 进行的 FT-IR 研究,使我们能够将协同吸附对 CO 吸附在单吸附位吸附水的影响归因于这一影响。此外,一旦形成水团簇,CO 容量的损失是不可避免的。最后,在这项研究中使用的聚酰亚胺 COF 在超过 75 小时的总暴露时间和高达 403 K 的温度下保持了性能。这项研究提供了关于如何实现协同 CO-HO 的见解,并为开发可在潮湿气流中运行的 CO 物理吸附剂指明了方向。