Higgins Kate, Ziatdinov Maxim, Kalinin Sergei V, Ahmadi Mahshid
Institute for Advanced Materials and Manufacturing, Department of Materials Science and Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States.
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
J Am Chem Soc. 2021 Dec 1;143(47):19945-19955. doi: 10.1021/jacs.1c10045. Epub 2021 Nov 18.
Antisolvent crystallization methods are frequently used to fabricate high-quality metal halide perovskite (MHP) thin films, to produce sizable single crystals, and to synthesize nanoparticles at room temperature. However, a systematic exploration of the effect of specific antisolvents on the intrinsic stability of multicomponent MHPs has yet to be demonstrated. Here, we develop a high-throughput experimental workflow that incorporates chemical robotic synthesis, automated characterization, and machine learning techniques to explore how the choice of antisolvent affects the intrinsic stability of binary MHP systems in ambient conditions over time. Different combinations of the end-members, MAPbI, MAPbBr, FAPbI, FAPbBr, CsPbI, and CsPbBr (MA, methylammonium; FA, formamidinium), are used to synthesize 15 combinatorial libraries, each with 96 unique combinations. In total, roughly 1100 different compositions are synthesized. Each library is fabricated twice by using two different antisolvents: toluene and chloroform. Once synthesized, photoluminescence spectroscopy is automatically performed every 5 min for approximately 6 h. Nonnegative matrix factorization (NMF) is then utilized to map the time- and compositional-dependent optoelectronic properties. Through the utilization of this workflow for each library, we demonstrate that the selection of antisolvent is critical to the intrinsic stability of MHPs in ambient conditions. We explore possible dynamical processes, such as halide segregation, responsible for either the stability or eventual degradation as caused by the choice of antisolvent. Overall, this high-throughput study demonstrates the vital role that antisolvents play in the synthesis of high-quality multicomponent MHP systems.
反溶剂结晶法常用于制备高质量的金属卤化物钙钛矿(MHP)薄膜、生产尺寸可观的单晶以及在室温下合成纳米颗粒。然而,尚未有对特定反溶剂对多组分MHP本征稳定性影响的系统研究。在此,我们开发了一种高通量实验流程,该流程结合了化学机器人合成、自动表征和机器学习技术,以探究反溶剂的选择如何随时间影响二元MHP体系在环境条件下的本征稳定性。使用端基成员MAPbI、MAPbBr、FAPbI、FAPbBr、CsPbI和CsPbBr(MA,甲铵;FA,甲脒)的不同组合来合成15个组合库,每个库有96种独特组合。总共合成了约1100种不同的成分。每个库使用两种不同的反溶剂甲苯和氯仿制备两次。合成后,每隔5分钟自动进行约6小时的光致发光光谱测定。然后利用非负矩阵分解(NMF)来映射与时间和成分相关的光电特性。通过对每个库使用此工作流程,我们证明了反溶剂的选择对于MHP在环境条件下的本征稳定性至关重要。我们探索了可能的动力学过程,如卤化物偏析,其导致了因反溶剂选择而产生的稳定性或最终降解。总体而言,这项高通量研究证明了反溶剂在高质量多组分MHP体系合成中所起的关键作用。