Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
Nat Commun. 2021 Nov 18;12(1):6723. doi: 10.1038/s41467-021-27027-8.
Early theories of efficient coding suggested the visual system could compress the world by learning to represent features where information was concentrated, such as contours. This view was validated by the discovery that neurons in posterior visual cortex respond to edges and curvature. Still, it remains unclear what other information-rich features are encoded by neurons in more anterior cortical regions (e.g., inferotemporal cortex). Here, we use a generative deep neural network to synthesize images guided by neuronal responses from across the visuocortical hierarchy, using floating microelectrode arrays in areas V1, V4 and inferotemporal cortex of two macaque monkeys. We hypothesize these images ("prototypes") represent such predicted information-rich features. Prototypes vary across areas, show moderate complexity, and resemble salient visual attributes and semantic content of natural images, as indicated by the animals' gaze behavior. This suggests the code for object recognition represents compressed features of behavioral relevance, an underexplored aspect of efficient coding.
早期的有效编码理论表明,视觉系统可以通过学习表示信息集中的特征(如轮廓)来压缩世界。这一观点得到了验证,即后视觉皮层中的神经元对边缘和曲率做出反应。尽管如此,目前尚不清楚其他信息丰富的特征是由更靠前的皮质区域(例如下颞叶皮层)中的神经元编码的。在这里,我们使用生成式深度神经网络,使用两只猕猴 V1、V4 和下颞叶皮层的浮动微电极阵列,根据来自整个视皮质层次结构的神经元反应来合成图像。我们假设这些图像(“原型”)代表了这种预测的信息丰富的特征。原型在不同区域之间变化,具有中等复杂度,并且类似于自然图像的显著视觉属性和语义内容,这是由动物的注视行为所表明的。这表明,用于对象识别的代码代表了与行为相关的压缩特征,这是有效编码中一个尚未被充分探索的方面。