2 型糖尿病无创检测原型。

Noninvasive Prototype for Type 2 Diabetes Detection.

机构信息

Universidad Santiago de Cali, Facultad de Ingeniería, Cali, Colombia.

MOABITER, Berlin, Germany.

出版信息

J Healthc Eng. 2021 Nov 9;2021:8077665. doi: 10.1155/2021/8077665. eCollection 2021.

Abstract

The present work demonstrates the design and implementation of a human-safe, portable, noninvasive device capable of predicting type 2 diabetes, using electrical bioimpedance and biometric features to train an artificial learning machine using an active learning algorithm based on population selection. In addition, there is an API with a graphical interface that allows the prediction and storage of data when the characteristics of the person are sent. The results obtained show an accuracy higher than 90% with statistical significance ( < 0.05). The Kappa coefficient values were higher than 0.9, showing that the device has a good predictive capacity which would allow the screening process of type 2 diabetes. This development contributes to preventive medicine and makes it possible to determine at a low cost, comfortably, without medical preparation, and in less than 2 minutes whether a person has type 2 diabetes.

摘要

本工作展示了一种安全、便携、非侵入式的设备的设计与实现,该设备能够利用电生物阻抗和生物特征,通过基于群体选择的主动学习算法,使用人工学习机器进行预测 2 型糖尿病。此外,还提供了一个带有图形界面的 API,当发送人员特征时,可以进行预测和数据存储。得到的结果显示,具有统计学意义( < 0.05)的准确率高于 90%。Kappa 系数值高于 0.9,表明该设备具有良好的预测能力,这将允许 2 型糖尿病的筛查过程。这项开发有助于预防医学,并使得以低成本、舒适、无需医疗准备且不到 2 分钟的时间来确定一个人是否患有 2 型糖尿病成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3dd1/8594986/e06c1fc32687/JHE2021-8077665.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索