Suppr超能文献

主成分分析:综述与最新进展

Principal component analysis: a review and recent developments.

作者信息

Jolliffe Ian T, Cadima Jorge

机构信息

College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK.

Secção de Matemática (DCEB), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa 1340-017, Portugal Centro de Estatística e Aplicações da Universidade de Lisboa (CEAUL), Lisboa, Portugal

出版信息

Philos Trans A Math Phys Eng Sci. 2016 Apr 13;374(2065):20150202. doi: 10.1098/rsta.2015.0202.

Abstract

Large datasets are increasingly common and are often difficult to interpret. Principal component analysis (PCA) is a technique for reducing the dimensionality of such datasets, increasing interpretability but at the same time minimizing information loss. It does so by creating new uncorrelated variables that successively maximize variance. Finding such new variables, the principal components, reduces to solving an eigenvalue/eigenvector problem, and the new variables are defined by the dataset at hand, not a priori, hence making PCA an adaptive data analysis technique. It is adaptive in another sense too, since variants of the technique have been developed that are tailored to various different data types and structures. This article will begin by introducing the basic ideas of PCA, discussing what it can and cannot do. It will then describe some variants of PCA and their application.

摘要

大型数据集越来越普遍,且往往难以解读。主成分分析(PCA)是一种用于降低此类数据集维度的技术,它在增加可解释性的同时,将信息损失降至最低。它通过创建新的不相关变量来实现这一点,这些变量会依次最大化方差。找到这些新变量,即主成分,归结为求解一个特征值/特征向量问题,并且新变量由手头的数据集定义,而非先验确定,因此PCA成为一种自适应数据分析技术。它在另一种意义上也是自适应的,因为已经开发出了该技术的变体,以适应各种不同的数据类型和结构。本文将首先介绍PCA的基本思想,讨论其能做什么和不能做什么。然后将描述PCA的一些变体及其应用。

相似文献

1
Principal component analysis: a review and recent developments.
Philos Trans A Math Phys Eng Sci. 2016 Apr 13;374(2065):20150202. doi: 10.1098/rsta.2015.0202.
2
Principal component analysis of texture features derived from FDG PET images of melanoma lesions.
EJNMMI Phys. 2022 Sep 15;9(1):64. doi: 10.1186/s40658-022-00491-x.
3
Principal component analysis of dynamic contrast enhanced MRI in human prostate cancer.
Invest Radiol. 2010 Apr;45(4):174-81. doi: 10.1097/RLI.0b013e3181d0a02f.
4
Adaptive dimensionality reduction for neural network-based online principal component analysis.
PLoS One. 2021 Mar 30;16(3):e0248896. doi: 10.1371/journal.pone.0248896. eCollection 2021.
5
Eigenanatomy: sparse dimensionality reduction for multi-modal medical image analysis.
Methods. 2015 Feb;73:43-53. doi: 10.1016/j.ymeth.2014.10.016. Epub 2014 Oct 22.
6
Improved Interpretability of Brain-Behavior CCA With Domain-Driven Dimension Reduction.
Front Neurosci. 2022 Jun 23;16:851827. doi: 10.3389/fnins.2022.851827. eCollection 2022.
7
Multivariate methods for the analysis of complex and big data in forensic sciences. Application to age estimation in living persons.
Forensic Sci Int. 2016 Sep;266:581.e1-581.e9. doi: 10.1016/j.forsciint.2016.05.014. Epub 2016 May 21.
8
Penalized Principal Component Analysis Using Smoothing.
ArXiv. 2025 Mar 3:arXiv:2309.13838v2.
10
Stochastic convex sparse principal component analysis.
EURASIP J Bioinform Syst Biol. 2016 Sep 9;2016(1):15. doi: 10.1186/s13637-016-0045-x. eCollection 2016 Dec.

引用本文的文献

1
Comparative analysis of stress levels and coping strategies in parents of neurodivergent and neurotypical children.
Front Child Adolesc Psychiatry. 2025 Aug 22;4:1619993. doi: 10.3389/frcha.2025.1619993. eCollection 2025.
2
High-Speed Atomic Force Microscopy Reveals the Dynamic Interplay of Membrane Proteins is Lipid-Modulated.
Small Sci. 2025 Jul 8;5(9):2500258. doi: 10.1002/smsc.202500258. eCollection 2025 Sep.
4
A transformer-based embedding approach to developing short-form psychological measures.
Front Psychol. 2025 Aug 13;16:1640864. doi: 10.3389/fpsyg.2025.1640864. eCollection 2025.
6

本文引用的文献

1
MINIMAX BOUNDS FOR SPARSE PCA WITH NOISY HIGH-DIMENSIONAL DATA.
Ann Stat. 2013 Jun;41(3):1055-1084. doi: 10.1214/12-AOS1014.
2
Dietary specializations and diversity in feeding ecology of the earliest stem mammals.
Nature. 2014 Aug 21;512(7514):303-5. doi: 10.1038/nature13622.
3
Selecting the Number of Principal Components in Functional Data.
J Am Stat Assoc. 2013 Dec 19;108(504). doi: 10.1080/01621459.2013.788980.
4
On Consistency and Sparsity for Principal Components Analysis in High Dimensions.
J Am Stat Assoc. 2009 Jun 1;104(486):682-693. doi: 10.1198/jasa.2009.0121.
5
Super-sparse principal component analyses for high-throughput genomic data.
BMC Bioinformatics. 2010 Jun 2;11:296. doi: 10.1186/1471-2105-11-296.
6
A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis.
Biostatistics. 2009 Jul;10(3):515-34. doi: 10.1093/biostatistics/kxp008. Epub 2009 Apr 17.
7
What is principal component analysis?
Nat Biotechnol. 2008 Mar;26(3):303-4. doi: 10.1038/nbt0308-303.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验