Suppr超能文献

惩罚效应随机效应荟萃分析方法。

A penalization approach to random-effects meta-analysis.

机构信息

Department of Statistics, Florida State University, Tallahassee, Florida, USA.

Department of Biostatistics, University of Florida, Gainesville, Florida, USA.

出版信息

Stat Med. 2022 Feb 10;41(3):500-516. doi: 10.1002/sim.9261. Epub 2021 Nov 18.

Abstract

Systematic reviews and meta-analyses are principal tools to synthesize evidence from multiple independent sources in many research fields. The assessment of heterogeneity among collected studies is a critical step when performing a meta-analysis, given its influence on model selection and conclusions about treatment effects. A common-effect (CE) model is conventionally used when the studies are deemed homogeneous, while a random-effects (RE) model is used for heterogeneous studies. However, both models have limitations. For example, the CE model produces excessively conservative confidence intervals with low coverage probabilities when the collected studies have heterogeneous treatment effects. The RE model, on the other hand, assigns higher weights to small studies compared to the CE model. In the presence of small-study effects or publication bias, the over-weighted small studies from a RE model can lead to substantially biased overall treatment effect estimates. In addition, outlying studies may exaggerate between-study heterogeneity. This article introduces penalization methods as a compromise between the CE and RE models. The proposed methods are motivated by the penalized likelihood approach, which is widely used in the current literature to control model complexity and reduce variances of parameter estimates. We compare the existing and proposed methods with simulated data and several case studies to illustrate the benefits of the penalization methods.

摘要

系统评价和荟萃分析是综合来自多个独立来源的证据的主要工具,在许多研究领域都有应用。当进行荟萃分析时,评估收集研究之间的异质性是一个关键步骤,因为它会影响模型选择和对治疗效果的结论。当研究被认为是同质的时,通常使用固定效应(CE)模型,而当研究是异质的时,则使用随机效应(RE)模型。然而,这两种模型都存在局限性。例如,当收集的研究具有异质的治疗效果时,CE 模型会产生过度保守的置信区间,置信区间的覆盖率很低。另一方面,RE 模型相对于 CE 模型会给小研究分配更高的权重。在存在小研究效应或发表偏倚的情况下,RE 模型中加权过高的小研究可能会导致整体治疗效果估计产生严重的偏差。此外,异常研究可能会夸大研究间的异质性。本文介绍了惩罚方法,作为 CE 和 RE 模型之间的折衷。所提出的方法受到惩罚似然方法的启发,该方法在当前文献中被广泛用于控制模型复杂性和减少参数估计的方差。我们使用模拟数据和几个案例研究来比较现有和提出的方法,以说明惩罚方法的好处。

相似文献

1
A penalization approach to random-effects meta-analysis.
Stat Med. 2022 Feb 10;41(3):500-516. doi: 10.1002/sim.9261. Epub 2021 Nov 18.
3
Likelihood-based random-effects meta-analysis with few studies: empirical and simulation studies.
BMC Med Res Methodol. 2019 Jan 11;19(1):16. doi: 10.1186/s12874-018-0618-3.
5
Response to letter to the editor from Dr Rahman Shiri: The challenging topic of suicide across occupational groups.
Scand J Work Environ Health. 2018 Jan 1;44(1):108-110. doi: 10.5271/sjweh.3698. Epub 2017 Dec 8.
6
A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses.
Res Synth Methods. 2019 Mar;10(1):83-98. doi: 10.1002/jrsm.1316. Epub 2018 Sep 6.
7
Public sector reforms and their impact on the level of corruption: A systematic review.
Campbell Syst Rev. 2021 May 24;17(2):e1173. doi: 10.1002/cl2.1173. eCollection 2021 Jun.
8
Reducing unemployment benefit duration to increase job finding rates: a systematic review.
Campbell Syst Rev. 2018 Feb 28;14(1):1-194. doi: 10.4073/csr.2018.2. eCollection 2018.
9
Impact of summer programmes on the outcomes of disadvantaged or 'at risk' young people: A systematic review.
Campbell Syst Rev. 2024 Jun 13;20(2):e1406. doi: 10.1002/cl2.1406. eCollection 2024 Jun.

本文引用的文献

1
Prior Choices of Between-Study Heterogeneity in Contemporary Bayesian Network Meta-analyses: an Empirical Study.
J Gen Intern Med. 2021 Apr;36(4):1049-1057. doi: 10.1007/s11606-020-06357-1. Epub 2021 Jan 5.
2
Evaluation of various estimators for standardized mean difference in meta-analysis.
Stat Med. 2021 Jan 30;40(2):403-426. doi: 10.1002/sim.8781. Epub 2020 Nov 12.
3
Meta-analysis of Proportions Using Generalized Linear Mixed Models.
Epidemiology. 2020 Sep;31(5):713-717. doi: 10.1097/EDE.0000000000001232.
4
Use of Prediction Intervals in Network Meta-analysis.
JAMA Netw Open. 2019 Aug 2;2(8):e199735. doi: 10.1001/jamanetworkopen.2019.9735.
5
Assessment of Publication Trends of Systematic Reviews and Randomized Clinical Trials, 1995 to 2017.
JAMA Intern Med. 2019 Nov 1;179(11):1593-1594. doi: 10.1001/jamainternmed.2019.3013.
6
Comparison of four heterogeneity measures for meta-analysis.
J Eval Clin Pract. 2020 Feb;26(1):376-384. doi: 10.1111/jep.13159. Epub 2019 Jun 24.
7
Random-Effects Meta-analysis: Summarizing Evidence With Caveats.
JAMA. 2019 Jan 22;321(3):301-302. doi: 10.1001/jama.2018.19684.
8
Bias caused by sampling error in meta-analysis with small sample sizes.
PLoS One. 2018 Sep 13;13(9):e0204056. doi: 10.1371/journal.pone.0204056. eCollection 2018.
9
A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses.
Res Synth Methods. 2019 Mar;10(1):83-98. doi: 10.1002/jrsm.1316. Epub 2018 Sep 6.
10
Performance of Between-study Heterogeneity Measures in the Cochrane Library.
Epidemiology. 2018 Nov;29(6):821-824. doi: 10.1097/EDE.0000000000000857.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验