通过 AtECA4 介导的回收和网格蛋白介导的内吞作用对 RBOHD 的空间调节有助于盐胁迫反应中 ROS 的积累,但不参与 flg22 诱导的免疫反应。
Spatial regulation of RBOHD via AtECA4-mediated recycling and clathrin-mediated endocytosis contributes to ROS accumulation during salt stress response but not flg22-induced immune response.
机构信息
Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea.
Bioapplications, Pohang, Korea.
出版信息
Plant J. 2022 Feb;109(4):816-830. doi: 10.1111/tpj.15593. Epub 2021 Nov 29.
Various environmental stresses can induce production of reactive oxygen species (ROS) to turn on signaling for proper responses to those stresses. Plasma membrane (PM)-localized respiratory burst oxidase homologs (RBOHs), in particular RBOHD, produce ROS via the post-translational activation upon abiotic and biotic stresses. Although the mechanisms of RBOHD activation upon biotic stress have been elucidated in detail, it remains elusive how salinity stress activates RBOHD. Here, we present evidence that trafficking of PM-localized RBOHD to endosomes and then its recycling back to the PM is critical for ROS accumulation upon salinity stress. ateca4 plants that were defective in recycling of proteins from endosomes to the PM and clc2-1 and chc2-1 plants that were defective in endocytosis showed a defect in salinity stress-induced ROS production. In addition, ateca4 plants showed a defect in transient accumulation of GFP:RBOHD to the PM at the early stage of salinity stress. By contrast, ateca4 plants showed no defect in the increase in the ROS level and accumulation of RBOHD to the PM upon flg22 treatment as wild-type plants. Based on these observations, we propose that factors involved in the trafficking machinery such as AtECA4 and clathrin are important players in salt stress-induced, but not flg22-induced, ROS accumulation.
各种环境压力可以诱导活性氧(ROS)的产生,从而开启对这些压力的适当反应信号。质膜(PM)定位的呼吸爆发氧化酶同源物(RBOHs),特别是 RBOHD,通过非生物和生物胁迫后的翻译后激活产生 ROS。虽然已经详细阐明了生物胁迫下 RBOHD 激活的机制,但盐胁迫如何激活 RBOHD 仍然难以捉摸。在这里,我们提供的证据表明,PM 定位的 RBOHD 向内体的运输,然后再循环回 PM,对于盐胁迫下 ROS 的积累至关重要。ateca4 植物在从内体到 PM 的蛋白质回收方面存在缺陷,clc2-1 和 chc2-1 植物在胞吞作用方面存在缺陷,它们在盐胁迫诱导的 ROS 产生方面存在缺陷。此外,ateca4 植物在盐胁迫早期 GFP:RBOHD 向 PM 的短暂积累方面存在缺陷。相比之下,ateca4 植物在 flg22 处理时 PM 上 ROS 水平的增加和 RBOHD 的积累没有缺陷,与野生型植物相同。基于这些观察结果,我们提出涉及运输机制的因子(如 AtECA4 和网格蛋白)是盐胁迫诱导而不是 flg22 诱导的 ROS 积累的重要参与者。