Suppr超能文献

碳纳米管/氮化碳异质结构光阴极实现高效稳定的锂-钴电池

High-Efficiency and Stable Li-CO Battery Enabled by Carbon Nanotube/Carbon Nitride Heterostructured Photocathode.

作者信息

Li Jiaxin, Zhang Kun, Zhao Yang, Wang Chuang, Wang Lipeng, Wang Lie, Liao Meng, Ye Lei, Zhang Ye, Gao Yue, Wang Bingjie, Peng Huisheng

机构信息

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China.

Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2022 Jan 21;61(4):e202114612. doi: 10.1002/anie.202114612. Epub 2021 Dec 7.

Abstract

Li-CO batteries are explored as promising power systems to alleviate environmental issues and to implement space applications. However, sluggish cathode kinetics of CO reduction/evolution result in low round-trip efficiency and poor cycling stability of the fabricated energy-storage devices. Herein, we design a heterostructued photocathode comprising carbon nanotube and carbon nitride to accelerate cathode reactions of a Li-CO battery under illumination. Benefiting from the unique defective structure of carbon nitride and favorable interfacial charge transfer, the photocathode effectively harvests ultraviolet-visible light to generate abundant photoexcited carriers and coordinates energetic photoelectrons/holes to participate in the discharge/charge reactions, leading to efficient photo-energy utilization in decreasing reaction barriers and enhancing thermodynamic reversibility of Li-CO battery. The resulting battery delivers a high round-trip efficiency of 98.8 % (ultralow voltage hysteresis of 0.04 V) and superior cycling stability (86.1 % efficiency retention after 100 cycles).

摘要

锂-二氧化碳电池被视为有望缓解环境问题并实现太空应用的电力系统。然而,二氧化碳还原/析出的缓慢阴极动力学导致所制备储能装置的往返效率低且循环稳定性差。在此,我们设计了一种由碳纳米管和氮化碳组成的异质结构光阴极,以在光照下加速锂-二氧化碳电池的阴极反应。受益于氮化碳独特的缺陷结构和良好的界面电荷转移,该光阴极有效地捕获紫外-可见光以产生大量光激发载流子,并协同高能光电子/空穴参与放电/充电反应,从而在降低反应势垒和增强锂-二氧化碳电池的热力学可逆性方面实现高效光能利用。所得电池具有98.8%的高往返效率(超低电压滞后0.04 V)和优异的循环稳定性(100次循环后效率保持率为86.1%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验