Zhou Yi-Fan, Chang Wen-Yan, Chen Jing-Zhe, Huang Jun-Ren, Fu Jia-Ying, Zhang Jin-Na, Pei Lin-Qi, Wang Ya-Hao, Jin Shan, Zhou Xiao-Shun
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People's Republic of China.
Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.
Nanotechnology. 2021 Dec 9;33(9). doi: 10.1088/1361-6528/ac3b84.
Quantum interference (QI) in single molecular junctions shows a promising perspective for realizing conceptual nanoelectronics. However, controlling and modulating the QI remains a big challenge. Herein, two-type substituents at different positions of-linked benzene, namely electron-donating methoxy (-OMe) and electron-withdrawing nitryl (-NO), are designed and synthesized to investigate the substituent effects on QI. The calculated transmission coefficients() indicates that -OMe and -NOcould remove the antiresonance and destructive quantum interference (DQI)-induced transmission dips at position 2. -OMe could raise the antiresonance energy at position 4 while -NOgroups removes the DQI features. For substituents at position 5, both of them are nonactive for tuning QI. The conductance measurements by scanning tunneling microscopy break junction show a good agreement with the theoretical prediction. More than two order of magnitude single-molecule conductance on/off ratio could be achieved at the different positions of -NOsubstituent groups at room temperature. The present work proves chemical substituents can be used for tuning QI features in single molecular junctions, which provides a feasible way toward realization of high-performance molecular devices.
单分子结中的量子干涉(QI)在实现概念性纳米电子学方面展现出了广阔的前景。然而,控制和调节量子干涉仍然是一个巨大的挑战。在此,设计并合成了连接苯不同位置的两种类型的取代基,即供电子的甲氧基(-OMe)和吸电子的硝基(-NO),以研究取代基对量子干涉的影响。计算得到的传输系数()表明,-OMe和-NO可以消除在位置2处的反共振和由破坏性量子干涉(DQI)引起的传输下降。-OMe可以提高位置4处的反共振能量,而-NO基团则消除了DQI特征。对于位置5处的取代基,它们在调节量子干涉方面均无活性。通过扫描隧道显微镜断结进行的电导测量与理论预测结果吻合良好。在室温下,-NO取代基团的不同位置可实现超过两个数量级的单分子电导开/关比。目前的工作证明化学取代基可用于调节单分子结中的量子干涉特征,这为实现高性能分子器件提供了一种可行的方法。