Suppr超能文献

Structure-activity relationships in engineered proteins: characterization of disruptive deletions in the alpha-ammonium group binding site of tyrosyl-tRNA synthetase.

作者信息

Lowe D M, Winter G, Fersht A R

机构信息

Department of Chemistry, Imperial College of Science and Technology, London, U.K.

出版信息

Biochemistry. 1987 Sep 22;26(19):6038-43. doi: 10.1021/bi00393a014.

Abstract

Residues Asp-78 and Gln-173 of the tyrosyl-tRNA synthetase of Bacillus stearothermophilus form part of the binding site for tyrosine by making hydrogen bonds with the alpha-ammonium group. Asp-38 is close enough to the group to make an important electrostatic contribution. Unlike other residues in the active site that have been studied by site-directed mutagenesis, Asp-38, Asp-78, and Gln-173 are part of hydrogen-bonded networks. Each of these residues has been mutated to an alanine, and the resultant mutants have been studied by kinetics to construct the difference energy diagrams for the formation of tyrosyl adenylate. In each example, the binding of tyrosine is weakened by about 2.5 kcal mol-1. But, unlike previous mutants, the dissociation of the second substrate, in this case ATP, is also seriously affected, being weakened by some 2 kcal mol-1 for TyrTS(Ala-78) and TyrTS(Ala-173). The energy of the transition state for the formation of tyrosyl adenylate is raised by 7.8 kcal mol-1 for the former and 4.5 kcal mol-1 for the latter mutant. Addition of these mutants to linear free energy plots constructed for the nondisruptive mutants in the accompanying study [Fersht, A. R., Leatherbarrow, R. J., & Wells, T. N. C. (1987) Biochemistry (preceding paper in this issue)] reveals large deviations of the data for TyrTS(Ala-38) and TyrTS(Ala-78) from the regression line. These thus belong to a different class of mutations from previous nondisruptive examples. This observation combined with the structural evidence and difference energy diagrams strongly suggests that the mutations Asp----Ala-38 and Asp----Ala-78 are disruptive in nature.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验